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There is a growing interest in the potentially deleterious impact of antibiotics on gut

microbiota. Patients with bone and joint infection (BJI) require prolonged treatment

that may impact significantly the gut microbiota. We collected samples from patients

with BJI at baseline, end of antibiotics (EOT), and 2 weeks after antibiotic withdrawal

(follow-up, FU) in a multicenter prospective cohort in France. Microbiota composition was

determined by shotgun metagenomic sequencing. Fecal markers of gut permeability and

inflammation as well as multi-drug-resistant bacteria (MDRB) and Clostridioides difficile

carriage were assessed at each time point. Sixty-two patients were enrolled: 27 native

BJI, 14 osteosynthesis-related BJI, and 21 prosthetic joint infections (PJI). At EOT, there

was a significant loss of alpha-diversity that recovered at FU in patients with native BJI

and PJI, but not in patients with osteosynthesis-related BJI. At EOT, we observed an

increase of Proteobacteria and Bacteroidetes that partially recovered at FU. The principal

component analysis (PCoA) of the Bray–Curtis distance showed a significant change

of the gut microbiota at the end of treatment compared to baseline that only partially

recover at FU. Microbiota composition at FU does not differ significantly at the genus level

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.586875
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.586875&domain=pdf&date_stamp=2021-03-05
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tristan.ferry@univ-lyon1.fr
https://doi.org/10.3389/fmed.2021.586875
https://www.frontiersin.org/articles/10.3389/fmed.2021.586875/full














Levast et al. Antimicrobial Therapy and Gut Microbiota

FIGURE 4 | Impact of the use of fluoroquinolone (FQ) on gut microbiota composition. (A) Shannon index distribution (genus level) at the end of treatment and at

follow-up (15 days after antibiotic withdrawal) according to exposition to FQ; Wilcoxon test for paired comparison and, Mann-Whitney test for inter-group

comparisons. (B) Richness (genus level) at the end of treatment and at follow-up (15 days after antibiotic withdrawal) according to exposition to FQ; Wilcoxon test for

paired comparison and, Mann-Whitney test for inter-group comparisons. Principal coordinate analysis of Bray–Curtis distance at three different times of sampling for

(C) patients treated with FQ or (D) without FQ; permutational multivariate analysis of variance. B, baseline; EOT, end of treatment; FU, follow-up. *p < 0.05;

**p < 0.01; ***p < 0.001.

Additional acquisition of MDRB at FU was observed for five
patients (5/35, 14%: three ESBL, one carbapenem-resistant
Enterobacter, and one rectal MRSA). Concerning C. difficile,
one patient had an asymptomatic carriage at baseline and
two other patients acquired C. difficile during the study (2/35,
5.7%). Overall, MDRB and C. difficile acquisition at EOT
and FU represented 20% (7/35) and 37.1% (13/35) of all
MDRB/C. difficile-free patients at the beginning of the study,
respectively (Figure 7A). Of interest is that the quantification
of MDRB-positive samples at FU in comparison to baseline
clearly indicated an increased proportion of ESBL bacteria
among fecal gram-negative bacteria (Figure 7B). Interestingly,
among the nine patients with an ESBL carriage at baseline,
five were still positive at EOT (5/9, 55.6%) and six at FU (6/9,
66.7%). MDRB carriage was not associated with differences
in term of resilience (Bray–Curtis index between B and
FU; Figure 7C) nor with different levels of fecal neopterin
(Figure 7D).

DISCUSSION

This study explores, for the first time, how prolonged
antibacterial therapy can disrupt the gut microbiota composition
in the context of BJI. First, our data show that antibiotic treatment
induced a significant loss of microbiota diversity that rapidly
recovered at 2 weeks after the end of treatment for native and
PJI but not for osteosynthesis-related BJI. These modifications
were associated with distinct variations of bacterial phyla, in
particular, with an increase of Proteobacteria and Bacteroidetes
that did not fully recover at 2 weeks after antibiotic withdrawal.
Second, comparing 6 to 12 weeks of antibiotic treatment did not
show amajor impact of treatment duration on the gut microbiota
composition at the genus level and on microbiota diversity or
resilience after treatment. In contrast, FQ was associated with
a greater impact on microbiota diversity compared to other
antibiotics, with a high resilience at FU. Third, fecal markers of
inflammation were increased after antibiotic treatment, with a
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FIGURE 5 | Correlation between markers of gut inflammation, permeability, and microbiota alpha-diversity. Values of fecal neopterin (A), fecal calprotectin (B), fecal

zonulin (C), fecal immunoglobulin A (D) at different time points; Wilcoxon test. (E) Correlation between fecal neopterin and the Shannon index (genus level) all along

the study; simple linear regression. B, baseline; EOT, end of treatment; FU, follow-up. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

correlation between fecal neopterin and both microbial alpha-
diversity and serum level of CRP. Moreover, patients with an
elevated CRP presented a distinct gut microbial composition
when compared to the others. This suggests that modifications
of the gut microbiota by antibiotics could be associated with low-
grade mucosal inflammation and residual systemic inflammation
that possibly persisted at least 2 weeks after antibiotic withdrawal.
Finally, as expected, antibiotic treatment was associated with
MDRB acquisition and, particularly, ESBL emergence.

The potential effects of antibiotics on gut microbiota
communities have been described for various treatments but
only on small cohorts and rarely after prolonged antibiotic
treatments (39). As observed in our work, loss of bacterial
diversity was commonly reported particularly for molecules that
target anaerobes with possible long-lasting effects even after a
short course of antibiotic exposure (40). Indeed Jernberg and
colleagues reported significant durable changes in Bacteroides
clonal diversity up to 2 years after 7 days of clindamycin
treatment (25), whereas others reported limited changes at 4
weeks after a short-term ciprofloxacin treatment (41).

Moreover, the effect of antibiotics on bacterial communities
varies between individuals. For example, repetitive ciprofloxacin
exposure amplifies microbial changes but only for some subjects
(26). Thus, pre-treatment microbial diversity may account for

differences in microbial communities’ resilience and long-term
effects of antibiotics. This initial dysbiosis/eubiosis state at the
beginning of treatment may account for the rapid recovery of
the gut microbial diversity of patients with native BJI compared
to others. Indeed osteosynthesis-related BJI and PJI involved
patients with complex infections and often previous antibiotic
exposures. Even if the overall gutmicrobiota diversity can recover
after treatment, definitive loss of some bacterial strains persists
over time (21). Indeed, in our data, alpha-diversity seemed to
be almost back to initial levels at 2 weeks after the end of
treatment, but permanent changes in the abundance of specific
species remained, of which the pathophysiological consequences
remain unknown. However, functional redundancy supported by
different bacterial species may counteract the possible effects of
these permanent changes in microbiota composition (42).

When comparing the 6- and 12-week groups by PCoA analysis
of the Bray–Curtis distance or when considering the correlation
between antibiotic duration and alpha-diversity, the duration of
treatment did not seem to affect the overall microbiota diversity
or the resilience of the gut microbiota after antibiotic withdrawal.
One possible explanation could be that 6 weeks of treatment
is a sufficient amount of time to reach a microbial steady state
that may persist with only small variations if antibiotics are
prolonged. Indeed doses of antibiotics in BJI are, most of the
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FIGURE 6 | Correlation between systemic and mucosal markers of inflammation. (A) Evolution of the plasmatic level of C-reactive protein (CRP) at different time

points. (B) Correlation between fecal neopterin and plasmatic CRP; simple linear regression. (C) Principal coordinate analysis of Bray–Curtis distance between

patients with each sample colored according to plasmatic CRP level at the end of treatment; permutational multivariate analysis of variance. B, baseline; EOT, end of

treatment; FU, follow-up. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

time, high because of the limited diffusion into the bones of the
majority of antibacterial therapies. This combination of high dose
and prolonged exposure may favor a rather rapid achievement of
a steady state of the gutmicrobiome that could be stable over time
as the treatment is continued.

As described in numerous works, antibiotic exposure was
associated with the selection of MDRB in our population.
Notably in our cohort, the proportion of patients positive for
MDRB or C. difficile reached almost 40% at FU. Even if MDRB
decolonization is known to occur spontaneously after antibiotic
withdrawal (43), increasing the amount of data suggests that
genes for antibiotic resistance can persist for a long time once
selected (44), which suggests a long-lasting effect of antibiotic
treatement for patients with BJI.

One other striking result of this study is the identification of
a correlation between markers of gut inflammation such as fecal
neopterin and microbiota diversity. In rats, antibiotic exposure
has already been associated, as we observed, with an increase
of gut permeability and increased plasma levels of haptoglobin,
a precursor of zonulin (45). Interestingly, the authors reported
similar modifications of the gut microbiota with an increase of
Proteobacteria and a general decrease of microbiota diversity.

In the same line, Feng et al. (27) reported similar modifications
of gut permeability after antibiotic treatment in mice, associated
with the activation of the NLRP3 inflammasome and autophagy.

We also found that residual systemic inflammation evaluated
by CRP correlated with fecal neopterin and, in consequence,
with the potential persistence of microbiota alterations at the end
of antibiotic treatment. It is of importance, as CRP is usually
monitored to evaluate the BJI’s response to antibiotics. Indeed
some physicians consider that if CRP is still elevated at the end
of treatment, it could be due to bacterial persistence at the site
of bone infection, leading to consideration of prolongation of the
antibiotic treatment. However, data indicate that the CRP level
at the end of treatment is not predictive of a persistent infection
(46, 47). Thus, our results raise the hypothesis that abnormal CRP
at the end of the treatment could be a potential marker of gut
barrier dysfunction associated with microbial dysbiosis. Further
data are required to confirm this hypothesis.

Antibiotic impact on the gut microbiota has potential long-
term effects which suggest several measures to correct or prevent
these changes. The best way would be to minimize the use of
antibiotics, preferentially by using in situ antibiotics or using
antibiotics with a narrow spectrum to limit the impact on
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FIGURE 7 | Fecal multi-drug-resistant bacteria (MDRB) and Clostridioides difficile carriage. (A) Proportion of patients with a positive fecal carriage (culture) at different

time points. (B) EBSL as percentage of the total of all Gram-negative bacteria (aerobic culture). (C) Bray Curtis distance between baseline and 15 days after antibiotic

withdrawal (FU) according to the carriage of MDRB; Mann–Whitney test. (D) Fecal neopterin at baseline and 15 days after antibiotic withdrawal (FU) according to the

carriage of MDRB; Mann–Whitney test. B, baseline; EOT, end of treatment; FU, follow-up; ESBL, extended-spectrum beta-lactamases; MRSA, methicillin-resistant

Staphylococcus aureus. *p < 0.05; **p < 0.01; ***p < 0.001.

the gut microbiota. However, in many infections such as BJI,
antibiotics cannot be replaced, and long-term systemic treatment
at high dosage is mandatory to cure patients. In these situations,
microbe-based therapy to counteract the deleterious ecological
effects of such treatments could be of interest, especially in
selected populations at risk of non-recovery (elderly, personal
medical history of C. difficile infection, low microbiota diversity,
possibly osteosynthesis-related BJI, etc.). When specifically
targeting the gut microbiota, different tools are commonly used.
Either selected microbes (bacteria and/or fungi) can be added
as probiotics or specific molecules (prebiotics) can be used to
promote specific species of interest, but as the gut microbiota is
a complex ecosystem, such tools may miss significant network
interactions at the level of bacterial species or between different
kingdoms (bacteriophages and fungi, for example).

Moreover, there are some concerns about probiotics, as they
are composed of only a few bacterial species, and their capacity
to positively impact antibiotic-associated dysbiosis is debatable.

Fecal microbiota transplantation is nowadays the only
treatment that permits the engraftment of a complex ecosystem
with proven functional benefits. It consists of the transfer
of the fecal microbial ecosystem of a healthy donor to a
recipient in order to restore gut homeostasis. Evaluation of fecal
microbiota transplantation in various pathological conditions is

now blooming, with contrasting results extending the need to
validate the administration modality and long-term safety (48).

Our study has some limitations. First, the relatively low
number of evaluated patients may account for a lack of power
especially in subgroup analysis. Moreover, some patients did not
perform stool sampling at all time points, which may also have
induced some bias. However, it is, to our knowledge, one of
the largest clinical studies evaluating the effects of prolonged
antimicrobial therapy on the gut microbiota. The use of rectal
swabs may facilitate recruitment and increase patient adherence
to develop larger studies. Furthermore, evaluation of microbial
composition and inflammatory markers at a more distant time
point after antibiotic withdrawal would be of great interest to
assess the long-term impact of antibiotics on the gut ecosystem
and mucosal physiology.

In conclusion, to our knowledge, this is the first study
that explores the impact of prolonged antibiotic treatment
on gut microbiota in the context of BJI. As expected,
antibiotics significantly altered the gut microbiota diversity
and composition, with a rapid but partial recovery observed
at 2 weeks after antibiotic withdrawal. Antibiotic duration or
the use of FQ did not seem to affect this resilience. These
modifications were associated with an increase in markers of
mucosal inflammation and gut permeability and elevated levels
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of CRP. Further studies are needed to explore these possible
links and their impact on resilience. Finally, as illustrated in our
cohort, acquisition of MDRB remains one the most challenging
side effects of long-term exposure to antibiotics. Innovative
microbe-based therapies could be a promising tool to address
these issues.
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Supplementary Figure 1 | Richness evaluated at each time of sampling

according to the type of bone joint infection. Wilcoxon test for paired comparison

and Mann–Whitney analysis for inter-group comparisons were used. B, baseline;

EOT, end of treatment; FU, follow-up.

Supplementary Figure 2 | Bacterial species that vary the most after antibiotic

treatment. Variations correspond to the ratio of relative abundance between (A)

baseline and the end of treatment and (B) between baseline and follow-up (15

days after antibiotic withdrawal). Descriptions of the 20 bacteria that varied the

most in relative abundance between B and EOT and B and FU for each group of

patients are presented. B, baseline; EOT, end of treatment; FU, follow-up.

Supplementary Figure 3 | Linear discriminant analysis effect size showing

species that support differences between baseline and end of treatment.

Supplementary Figure 4 | Correlation between the Shannon index and clinical

parameters. Correlation between the age at baseline and the Shannon index at

baseline (A), end of treatment (B), and 15 days after antibiotic withdrawal (C).

Correlation between the body mass index at baseline and the Shannon index at

baseline (D), end of treatment (E), and 15 days after antibiotic withdrawal (F). r,

Pearson correlation coefficient; B, baseline; EOT, end of treatment; FU, follow-up.

Supplementary Figure 5 | Correlation between markers of gut inflammation,

permeability, and microbiota alpha-diversity according to the type of bone joint

infection. Values of fecal neopterin (A), fecal calprotectin (B), fecal zonulin (C), and

fecal immunoglobulin A (D) at different time points; Wilcoxon test. B, baseline;

EOT, end of treatment; FU, follow-up.

Supplementary Figure 6 | Linear discriminant analysis effect size showing

species that support differences between patients with an elevated C-reactive

protein (≥5 mg/L) at the end of treatment and others.
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