

CERIOLI Mattéo¹; BATAILLER Cécile¹⁻³; CONRAD Anne¹⁻⁴, ROUX Sandrine¹⁻³, PERPOINT Thomas^{1,3}; BECKER Agathe^{1,3}; TRIFFAULT-FLLIT Claire^{1,3}; LUSTIG Sébastien¹⁻³; FESSY Michel-Henry^{1,3}, LAURENT Frédéric¹⁻⁴, VALOUR Florent¹⁻⁴, CHIDIAC Christian¹⁻⁴ and FERRY Tristan¹⁻⁴ on behalf of the Lyon Bone and Joint Infection study group

¹ hospices Civils de Lyon (HCL); ² Université Claude Bernard Lyon 1; ³ Centre Interrégional de Référence des Infections Ostéo-Articulaires complexes, HCL; ⁴ Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, UCBL1, Lyon, France

INTRODUCTION

Implant-associated bone and joint infection (BJI) is an uncommon, but dreadful complication of arthroplasties and orthopedic trauma. P. aeruginosa is a particular GNB (Gram-negative bacteria) commonly considered as non-fermenting bacterium, that causes 5 to 20% of the GNB infections and is considered as one of the most difficult-to-treat GNB,.

The aim of this study is to analyze the impact of optimal surgical treatment, effective antimicrobial IV therapy and ciprofloxacin use on the prognosis of implant-associated *P. aeruginosa* BJI.

We included all patients, with *P. aeruginosa* implant-associated infection managed in our institution between January 2011 and June 2018. Definitions were: - Implant-associated infection was diagnosed according to the definition of organ/space surgical site infection proposed by the CDC.

Table 1		Whole			
Characteristics		population (n=90)	Failure (n=23)	Remission (n=67)	p ^a
Age in years (median, IQR)		60 (47-72)	61 (43- 74)	59 (47-72)	0.90
Male sex (n, %)		56 (62)	17 (74)	39 (58)	0.18
BMI ≥30 (n, %)		24 (28)	6 (29)	18 (29)	1
Active smoking (n, %)		29 (35)	10 (44)	19 (32)	0.34
Score ASA > 2 (n, %)		30 (34)	8 (35)	22 (33)	0.90
Score Charlson > 4 (n, %)		24 (27)	7 (30)	17 (25)	0.64
Previous infection at the same site (n, %)		19 (21)	6 (26)	13 (19)	0.50
Prosthesis (n, %)		30 (33)	7 (30)	23 (34)	0.73
Age of implant in days (median, IQR)		47 (21.7- 247.5)	40 (21- 222)	63 (26- 798)	0.29
Acute infection (n, %)		56 (62)	14 (61)	42 (63)	
Sub-acute infection (n, %)		8 (9)	2 (9)	6 (9)	0.98
Chronic infection (n, %)		26 (29)	7 (30)	19 (28)	
Polymicrobial infection (n, %)		66 (73)	18 (78)	48 (71)	0.54
BJI due to <i>P. aeruginosa</i> ciprofloxacin- resistant (n, %)		11 (12)	9 (39)	2 (3)	<0.001
Optimal surgical treatment (n, %)		54 (64)	9 (39)	45 (72)	0.004
Effective initial IV treatment (n, %)		64 (71)	12 (52)	52 (77)	0.020
Treatment with ciprofloxacin (n, %)		79 (88)	13 (57)	66 (99)	<0.001

Among the 1638 implant-associated BJI occurring over the 7-year study period, 90 patients (5,49%) were infected by *Pseudomonas aeruginosa* and were included (Table 1). Twenty-five patients experienced 28 adverse events under antibiotics active against *P. aeruginosa* (13 SAE). Fifty-six (62%) patients were considered to have optimal surgical treatment, including 21 DAIR for an acute infection, 2 had incomplete implant removal, 31 complete implant removal for a chronic infection, one complete ablation followed by amputation and one DAIR followed by amputation. During a prolonged followup (median follow-up of 20 months [IQR, 9-37]; 40 patients were lost to follow-up during the first two-years; 24 patients without failure were followed at least 2 years, 23 patients experienced a treatment failure: 7 patients experience a persistence of *P. aeruginosa* after treatment, while 16 had a superinfection. Optimal surgical treatment was significantly associated with a higher success rate in the univariate analysis (p=0.003) and in the Kaplan-Meyer survival curve (log-rank test, p=0.009) (panel A). As long as it concerns the antimicrobial treatment, sixty-four (71%) patients received effective initial treatment against P. aeruginosa administered by IV, while 26 (29%) did not. Not receiving an effective initial IV drug exposed the patient to an early failure (panel B) and when we considered an IV treatment of at least 3 weeks, which was undertaken by 90 (81%) patients, it correlates with a higher success rate both in the univariate analysis (p=0.020) and according to the Kaplan-Meyer curve (log-rank test, p=0.009) (panel B). Eleven (12%) patients had an infection due to a *P. aeruginosa* resistant to ciprofloxacin and this impacted as well (p<0.001). Seventy-nine (88%) patients received a course of therapy with ciprofloxacin and this was significantly associated with a higher success rate in the univariate analysis (p<0.001) (panel C). Moreover, we observed a higher risk of failure if patients received less than 3 months of ciprofloxacin (log-rank test, p=0.007) (panel D).

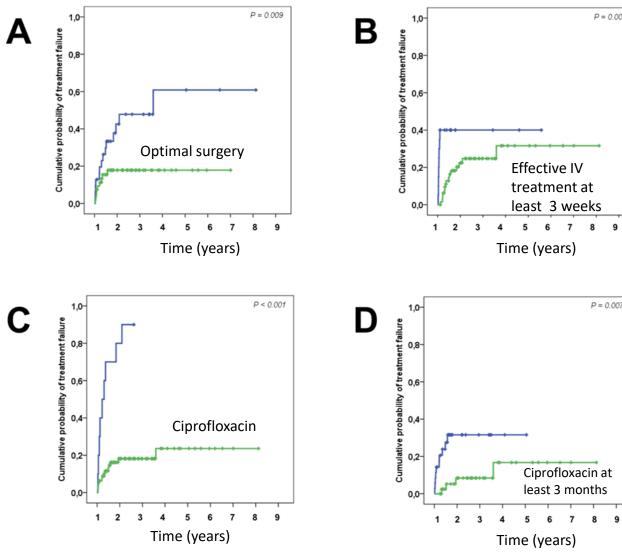
Our data show that these infections are mostly acute and often polymicrobial. After a long-term follow-up, the remission rate of patients with a *P. aeruginosa* implant-associated BJI was 74%. Surgical treatment is the cornerstone of Implant-associated infections and choosing the correct operation for the case among the number of option should follow as possible the current guidelines. It must be a multidisciplinary, meticulous process, and it must take into account the patient status and integrate its functional prognosis in case of implant removal. *P. aeruginosa* implant-associated BJI is one of the most difficult-to-treat BJIs, with a strong impact on the prognosis of the surgical strategy. An effective initial IV antibiotic treatment for at least 3 weeks seems to be required, followed by oral ciprofloxacin for a total duration of 3 months.

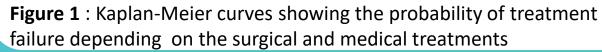
Pseudomonas aeruginosa implant-associated Bone and Joint Infections : Experience in a Regional Reference Center in France

Amsterdam, Netherlands 29th ECCMID 13 – 16 April 2019

The congress of 💥 ESCMID

POPULATION - METHODS


- Implant-associated infections in this study were defined as "early" (within 1 month from the date of implantation), "delayed" (between 1 and 3 months from the date of implantation) and "chronic" if the onset of symptoms was >3 months from the date of implantation.


- Treatment failure was defined as any type of relapse of implant-associated infection including persistence (new surgery with *P. aeruginosa* in culture), superinfection or any other cause of relapse such as the need for a subsequent surgery.

• Optimal surgical treatment was evaluated according to the type of surgery and the timing of the infection.

- Effective initial antibiotic treatment was defined by the use of an active IV beta-lactam drug, based on drug-susceptibility on the antibiogram.

RESULTS

CONCLUSIONS

P0314

