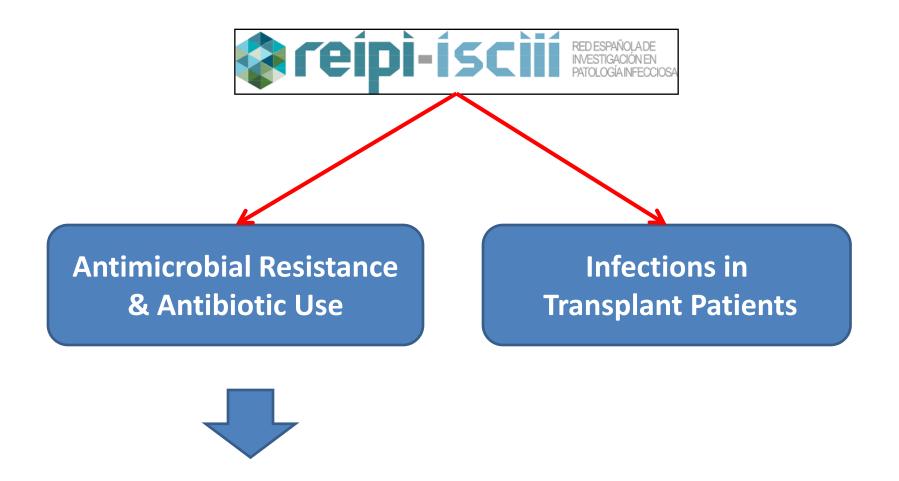
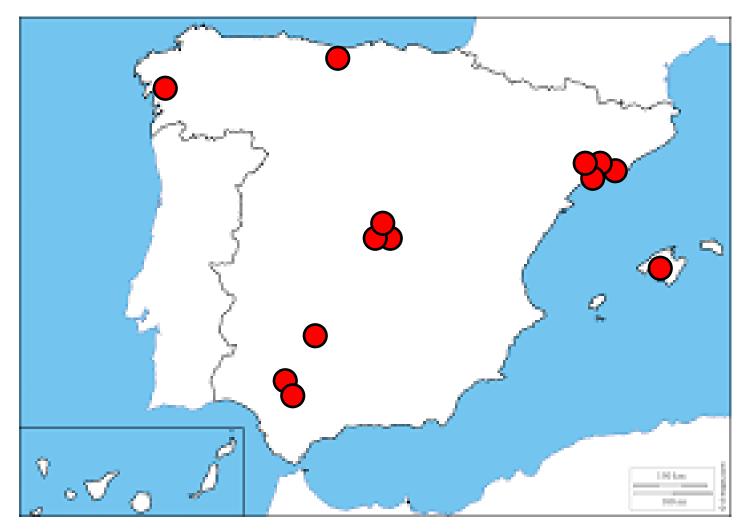
7ème Journee Régionale Scientifique de Formations et d'Échange du CRIOAc Lyon, 27 Mars 2018


Staphylococcal and Streptococcal Prosthetic Joint Infection: the Spanish Experience

> Jaime Lora-Tamayo Department of Internal Medicine Hospital Universitario 12 de Octubre Madrid, Espagne

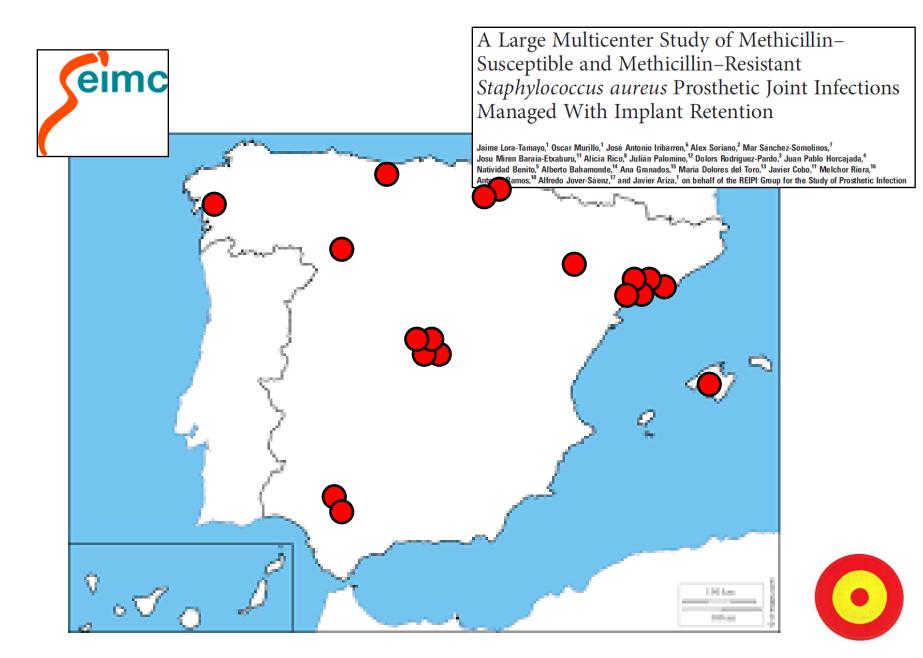
None to disclose


Outline

- Spanish platforms for colaborative research in ID
- The aims of our recent studies on staph. and strepto PJI
- Staphylococcal PJI 2 observational studies and 1 RCT
- Streptococcal PJI 1 large observational study
- Final thoughts

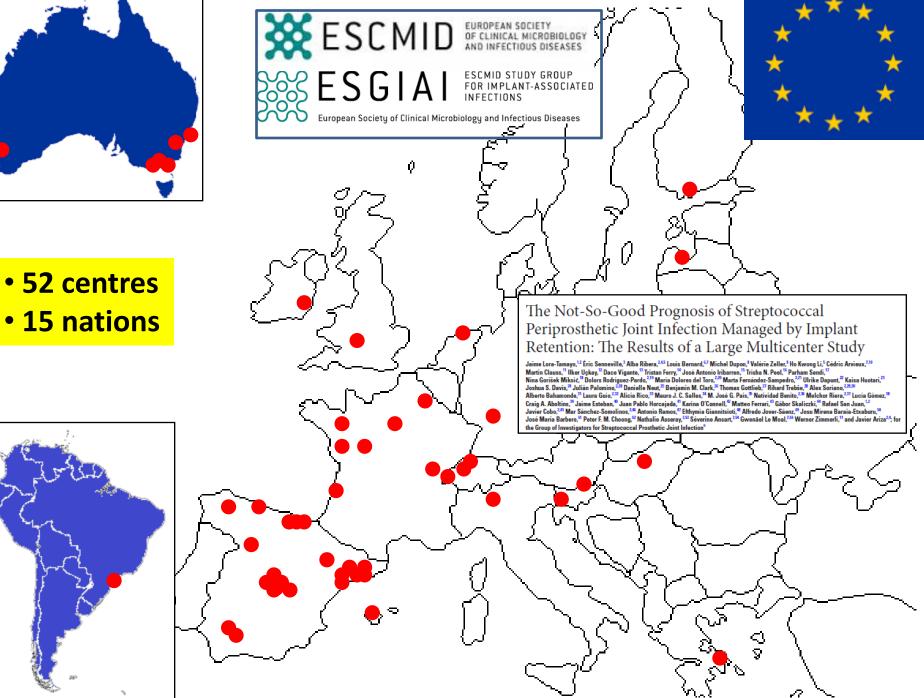
Work Package 8 - To optimize the management of prosthetic joint infections

eimc


Sociedad de Enfermedades Infecciosas y Microbiología Clínica

www.seimc.org

Group d'Étude des Infections Osteo-articulaires

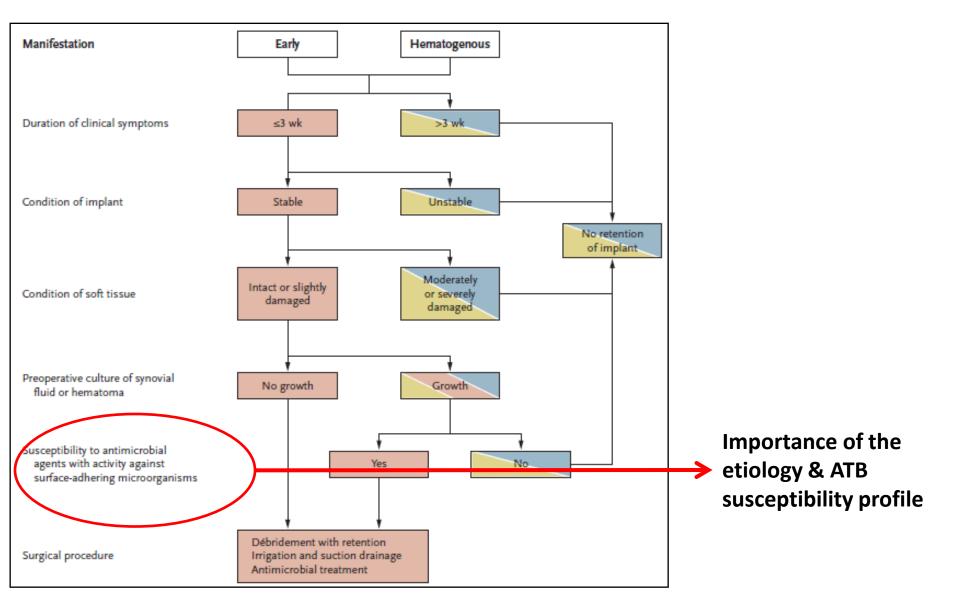



ille - Tourcoing Centres de référence Centres correspondants Interregion Nord-Ouest Amiens 0 Caen Paris Interrégion Nancy Rennes O Ile the France Interregion Est 0 Tours 0 Interregion Quest 0 0 0 Lyon Interrégion Sud-Est 0 Grenobi-0 Interrégion Sud-Ouest Bordeaux Toulouse Marseill Interrégion Sud-Méditerranée

Les Centres de Référence et leurs Centres Correspondants en France

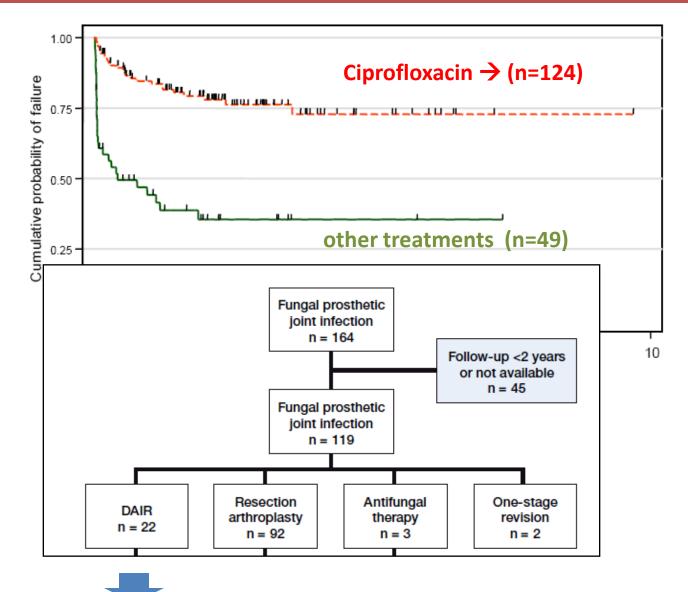
Javier Ariza, Hospital Universitario de Bellvitge, Barcelona

What is the real likelihood of curing a staphylococcal / streptococcal PJI by DAIR?


S. aureus – 13-90%

Strepcococci – 40-100%

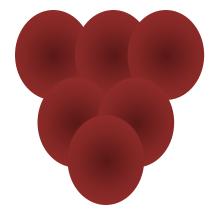
Reference	N (DAIR)	% Success
Brandt 1997	33	36%
Marculescu 2006	32	13%
Barberán 2006	21	62%
Aboltins 2007	19	90%
Byren 2009	48	73%
Vílchez 2011	53	75%
Senneville 2011	41	78%


Reference	N (DAIR)	% Success
Duggan 2001	5	40%
Meehan 2003	19	89%
Everts 2005	16	94%
Zeller 2009	6	67%
Sendi 2011	20	65%
Corverc 2011	7	42%
Bertz 2015	9	100%

Streptococcal & Staphylococcal PJI – aims

Zimmerli, 2004. NEJM

Streptococcal & Staphylococcal PJI – aims


4 (18%) success

Kuiper et al, 2013. Acta Orthop Rodríguez, 2014. CMI

Staphylococcus aureus

- Real likelihood of curing
- Outcome of MRSA infection
- Role of rifampin in a large series
- Role of rifampin vs. MRSA
- Role of specific rifampin combinations
- Risk factors for failure

Reference	MSSA + MRSA	% Success
Brandt, et al. 1997	32 + 1	36%
Marculescu, et al. 2006	30 + 2	13%
Barberán, et al. 2006	14 + 7	62%
Aboltins, et al. 2007	8 + 11	90%
Byren, et al. 2009	39 + 9	73%
Vílchez, et al. 2011	49 + 4	75%
Senneville, et al. 2011	35 + 6	78%



Streptococcal & Staphylococcal PJI – aims

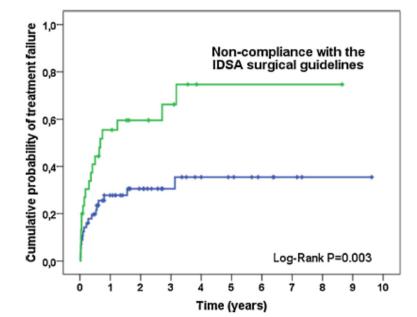
Streptococci

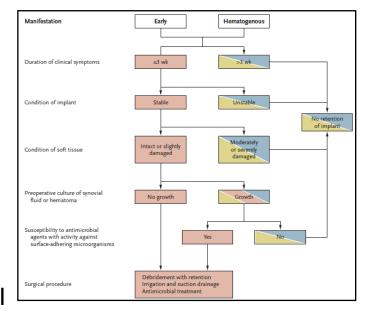
- Real likelihood of curing
- Outcome of specific streptococcal species
- Performance of betalactams vs. fluoroquinolones and/or rifampin
- Risk factors for failure

Reference	N (DAIR)	Streptococcal species	% Success
Duggan 2001	5	S. agalactiae	40%
Meehan 2003	19	S. agalactiae	89%
Everts 2005	16	Various	94%
Zeller 2009	6	S. agalactiae	67%
Sendi 2011	20	S. agalactiae	65%
Corverc 2011	7	Various	42%
Bertz 2015	9	Various	100%

Analysis of cases managed by DAIR

(regardless of the appropriateness of the indication)


Clinical management of PJI at Spanish hospitals


- multi-disciplinar medical teams (orthopedists, IDs, micro, radiologists...)
- Zimmerli's criteria for DAIR
- treatment standards
 - rifampin-based combinations for staphylococci
 - β-lactamas (±rifampin) for streptococci

Streptococcal & Staphylococcal PJI – foreword on methods

Re. criteria for DAIR

- good condition of skin and soft tissues
- soundly fixed prosthesis (surgical criteria)
- young biofilm / acute infection
 - short duration of symptoms (≤21 days)
 - hematogenous or early post-surgical PJI

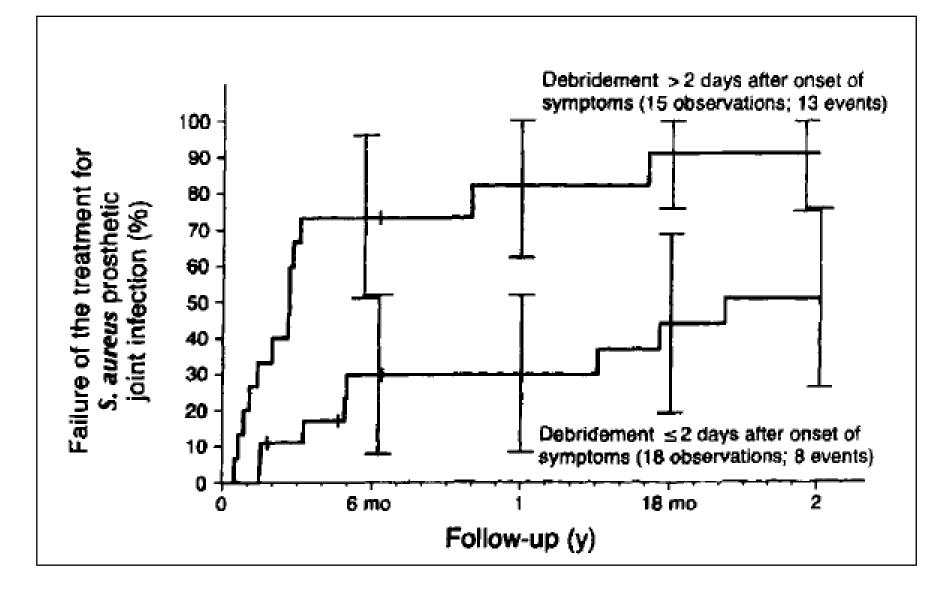
89 PJI caused by MSSA

Zimmerli, 2004. NEJM Bouaziz, 2017. Med Mal Infect

Duration of symptoms

• the sooner, the better... but, when is it too late???

Table 1.—Study Population


Characteristic	Rifampin Combination (n=18)	Placebo Combination (n=15)
Mean (SD) age, y	66 (15)	67 (15)
Sex, male:female	9:9	5:10
Implant Hip prosthesis	5	3
Knee prosthesis	3	4
Osteosynthesis	10	8
Microbiology Staphylococcus aureus (0/26 methicillin resistant)	15	11
Staphylococcus epidermidis (2/7 methicillin resistant)	3	4
Initial intravenous treatment Flucloxacillin	13	13
Vancomycin	5†	2‡
Median duration of infection,* d (range)	5 (0-19)	4 (0-21)

*Duration of signs and symptoms of infection prior to enrollment in the study.

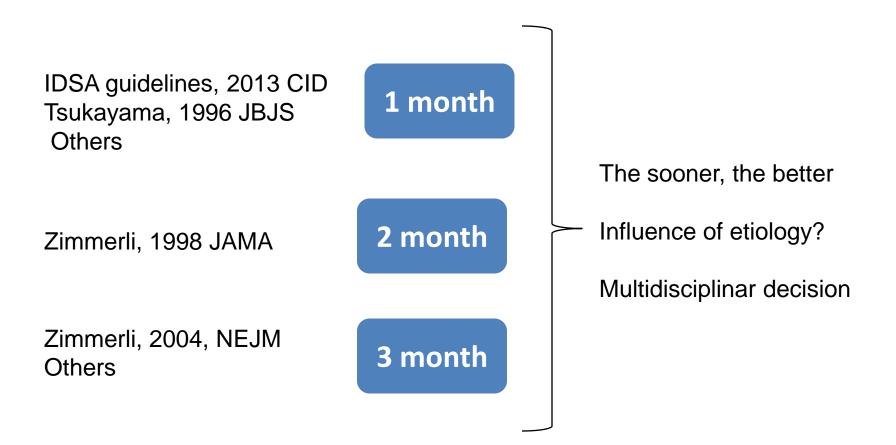
†One patient had methicillin-resistant *S epidermidis*; 4 patients had methicillin-sensitive *S aureus* and allergy. ‡One patient had methicillin-resistant *S epidermidis*; 1 had methicillin-sensitive *S aureus* and allergy.

Zimmerli, 1998. JAMA

Streptococcal & Staphylococcal PJI – foreword on methods

Brandt, 1998. CID

Streptococcal & Staphylococcal PJI – foreword on methods


Reference	N DAIR	Type of prosthesis	Etiology	Symptom duration
Schoifet, 1990 JBJS	31	Knee	Various	21 days vs. 30 days
Burger, 1991 CORR	60	Knee	Various	≤ 21 days
Brandt, 1997 CID	33	Knee & Hip	S. aureus	≤ 2 days
Tattevin, 1999 CID	34	Knee & Hip	Various	5 days vs. 54 days
Barberán, 2006 AJM	60	Knee & Hip	Staph.	2.7 days vs. 7.4 days
Marculescu, 2006 CID	99	Knee & Hip	Various	≤ 7 days
Hsieh, 2009 CID	154	Knee & Hip	Various	GN: \leq 11 days; GP: \leq 5 days
Cobo, 2011 CMI	117	Knee & Hip	Various	10.2 days vs. 15.7 days
Lora-T, 2013 CID	345	Knee & Hip	S. aureus	≤10 days
Lora-T, 2017 CID	462	Knee & Hip	Strepto.	≤ 7 days

The sooner, the better, but... ...when is it too late?

- Microorganism, treatment, surgery
- Overlap with post-surgical symptoms
- Bias: ill patients are debrided earlier

Prosthesis age as a more reliable parameter (for post-operative infections)

Time from prosthesis placement to surgery of debridement

Cure = cure of the infection at 1st try while retaining a functional prosthesis

Primary endpoint \rightarrow Failure (broad definition)

- Death related with the infection (clinical criteria)
- Clinical signs of infection persistence/relapse at last visit
- Need for salvage therapy, including
 - need for extra debridements > 30 days after the 1st one
 - need for extra couses of ATB beyond the first plan

including suppressive antimicrobial therapy

need for prosthesis removal

for any reason (including orthopaedics) during the 1st year

• due to persistent/relapsing infection at any time

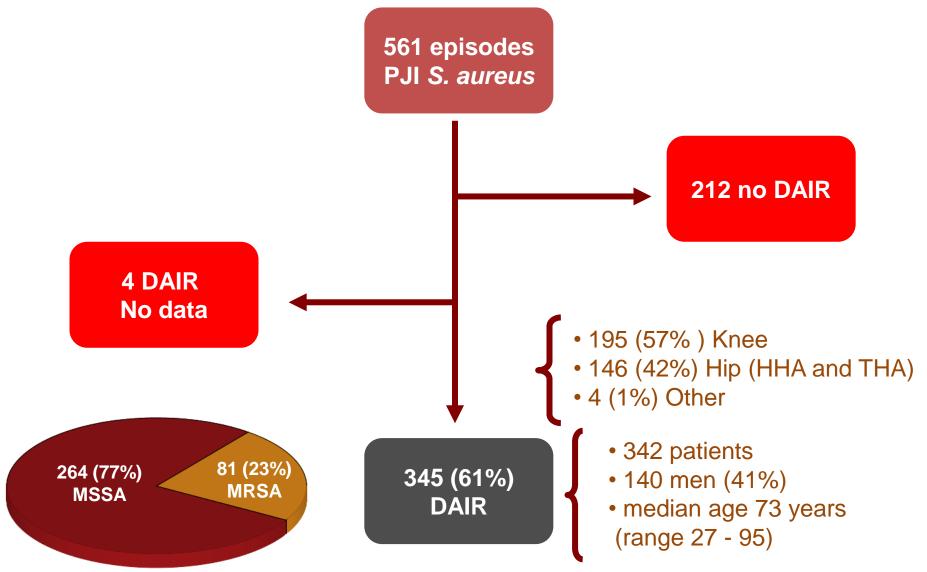
due to staph/strepto and/or other microorganisms

due to staph/strepto and/or other microorganisms

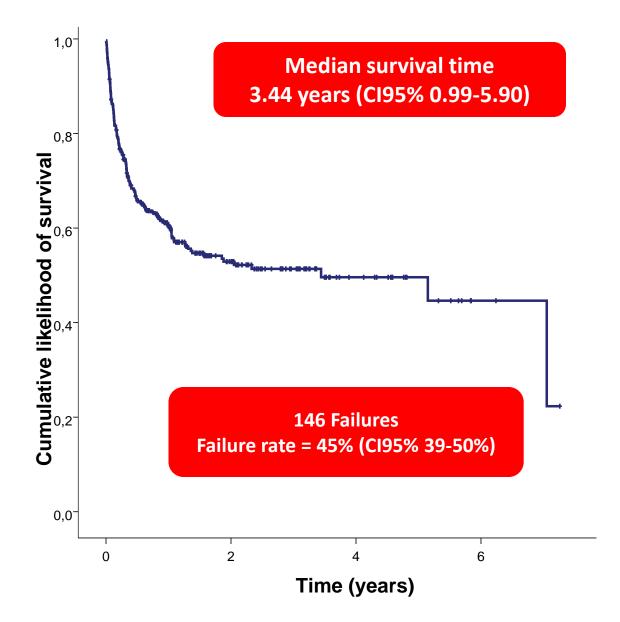
due to staph/strepto and/or other microorganisms

MAJOR ARTICLE

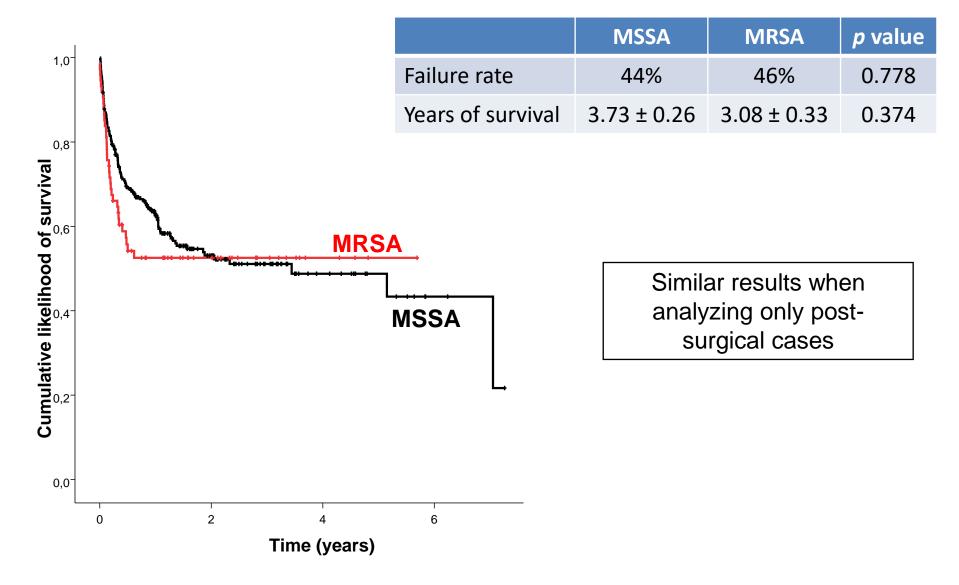
17 Spanish hospitals – 345 cases


A Large Multicenter Study of Methicillin– Susceptible and Methicillin–Resistant *Staphylococcus aureus* Prosthetic Joint Infections Managed With Implant Retention

Jaime Lora-Tamayo,¹ Oscar Murillo,¹ José Antonio Iribarren,⁶ Alex Soriano,² Mar Sánchez-Somolinos,⁷ Josu Miren Baraia-Etxaburu,¹¹ Alicia Rico,⁸ Julián Palomino,¹² Dolors Rodríguez-Pardo,³ Juan Pablo Horcajada,⁴ Natividad Benito,⁵ Alberto Bahamonde,¹⁴ Ana Granados,¹⁵ María Dolores del Toro,¹³ Javier Cobo,¹¹ Mel chor Riera,¹⁶ Antonio Ramos,¹⁰ Alfredo Jover-Sáenz,¹⁷ and Javier Ariza,¹ on behalf of the REIPI Group for the Study of Prosthetic Infection


The REIPI Group for the Study of Prosthetic Joint Infection also includes Gorane Euba, Xavier Cabo and Salvador Pedrero (Hospital Universitario de Bellvitge, Barcelona, Spain); Miguel Ángel Goenaga, Maitane Elola and Enrique Moreno (Hospital Universitario Donostia, San Sebastián, Spain); Sebastián García-Ramiro, Juan Carlos Martínez-Pastor and Eduard Tomero (Hospital Clínic i Provincial, Barcelona, Spain); Juan Manuel García-Lechuz, Mercedes Marín and Manuel Villanueva (Hospital Universitario Gregorio Marañón, Madrid, Spain); Iñigo López, Ramón Cisterna and Juan Miguel Santamaría (Hospital de Basurto, Bilbao, Spain); María-José Gómez, Andrés Puente y Pedro Cano (Hospital Universitario Virgen del Rocío, Sevilla, Spain); Carlos Pigrau, Roger Sordé and Xavier Flores (Hospital Universitario Vall d'Hebron, Barcelona, Spain); Luisa Sorlí, Paula González-Miguez and Lluis Puig (Hospital del Mar, Barcelona, Spain); María Franco, Marcos Jordán and Pere Coll (Hospital de la Santa Creu i Sant Pau, Barcelona, Spain); Juan Amador-Mellado, Carlos Fuster-Foz, Luis García-Paíno (Hospital El Bierzo, Ponferrada, Spain); Isabel Nieto, Miguel Ángel Muniain and Ana Isabel Suárez (Hospital Universitario Virgen Macarena, Sevilla, Spain); María Antonia Maseguer, Eduardo Garagorri and Vicente Pintado (Hospital Universitario Ramón y Cajal, Madrid, Spain); Carmen Marinescu and Antonio Ramírez (Hospital Universitario Son Dureta, Palma de Mallorca, Spain); Elena Múñez, Teresa Álvarez and Rodrigo García (Hospital Universitario Puerta de Hierro, Madrid, Spain); and Fernando Barcenilla, Laura Prat and Ferran Pérez (Hospital Universitario Arnau de Vilanova, Lérida, Spain).

Clin Infect Dis. 2013; 56: 182-94



Overall failure (146 aventa)	Unadjusted a	nalysis	Adjusted analysis	
Overall failure (146 events)	HR	P	HR	р
Chronic renal impairment	2.03	0.051	-	-
Rheumatoid arthritis	1.84	0.021	-	-
Immunosuppressive ther.	2.31	0.006	2.31	0.013
Revision prosthesis	1.41	0.092	-	-
Infection caused by MRSA	1.19	>0.05		
Haematogenous infection	1.83	0.004	-	-
Bacteremia	2.29	<0.001	1.81	0.015
Polymicrobial infection	1.76	0.005	1.77	0.007
CRP at diagnosis (per 100mg/L)	1.29	<0.001	1.22	0.021
Temperature>37ºC	1.54	0.011	-	-
Abnormal Rx at diagnosis	1.66	0.033	-	-
Debridement delay > 10d	1.39	0.050	-	-
Polyethylene exchange	0.56	0.004	0.65	0.026
Need for ≥ 2 debridements	1.98	0.003	1.63	0.039

Other parameters with no statistical significance: sex, age, diabetes, prosthesis location, sinus tract

		MSSA (n=264)	MRSA (n=81)	р
Age (years)		71 (63-77)	78 (71-82)	<0.001
Diabetes mell	litus	47 (18%)	21 (26%)	0.097
Renal chronic	c impairment	7 (3%)	12 (15%)	<0.001
	Нір	97 (37%)	49 (60%)	<0.001
Prosthesis location	Knee	166 (63%)	29 (36%)	
looution	Other	1 (0.4%)	3 (3.7%)	
Revision pros	sthesis	46 (17%)	21 (26%)	0.091
	Hematogenous	46 (17%)	6 (7%)	
Type of infection	Early post-surg	156 (59%)	58 (72%)	0.057
meetion	Late-chronic	62 (24%)	17 (21%)	
Bacteriemia		44 (17%)	10 (12%)	0.349
Polymicrobial infection		49 (19%)	15 (19%)	0.992
Leukocytes (10E9/L)		9.7 (6.9-13.8)	7.9 (5.1-11.2)	0.014

MSSA & MRSA – similar surgical treatment MSSA & MRSA – similar use of rifampin

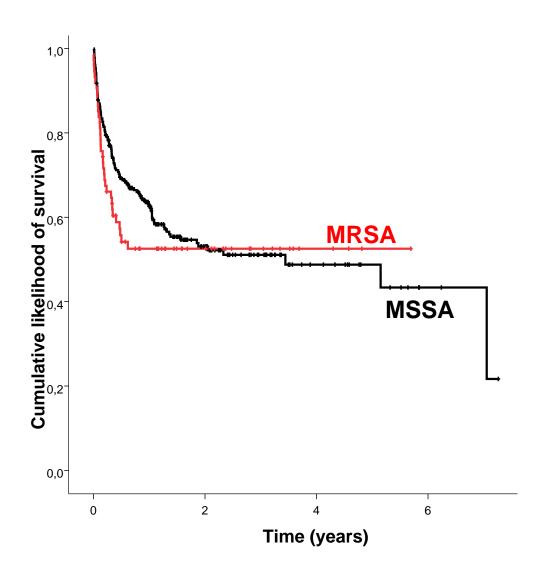
	Whole treatment				
	MSSA	MRSA	р		
Days of Rifampin*	90 ± 90	93 ± 63	NC		
>28 days	78%	93%	NS		
* Mean ± SD					
	Treatmer	Treatment in the first 30 days			
	MSSA	MRSA	ρ		
Days of Rifampin*	21 ± 11	23 ± 11	NS		
>14 days	75%	77%	071		

MSSA

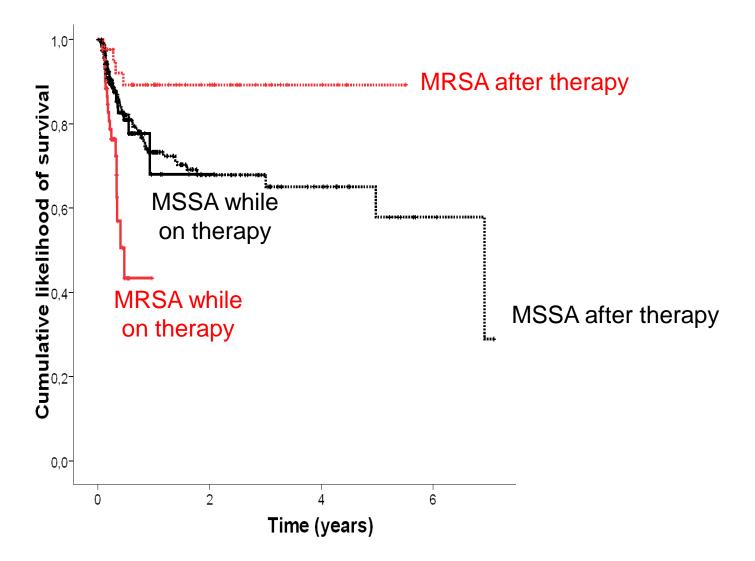
B-lactams Quinolones (Levo) MRSA Vancomycin, CMX, CLND & LNZ

Risk factors for failure after the 1st 30 days of treatment

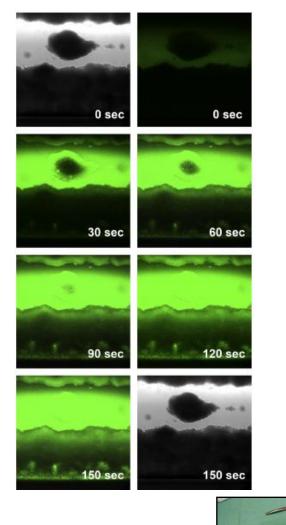
n=284; failure = 47	adjusted HR	<i>p</i> value
Age (per year)	1.03 (1.00-1.07)	0.052
Immunosuppressive therapy	3.05 (1.30-7.14)	0.010
Infection by MRSA	2.33 (1.25-4.33)	0.008
Sinus tract	1.88 (0.94-3.77)	0.076
Abdnormal Rx at diagnosis	2.28 (1.14-3.54)	0.019
Need for ≥2 debridements	2.25 (1.11-4.56)	0.025
Use of rifampin for >14 days	0.49 (0.26-0.91)	0.024

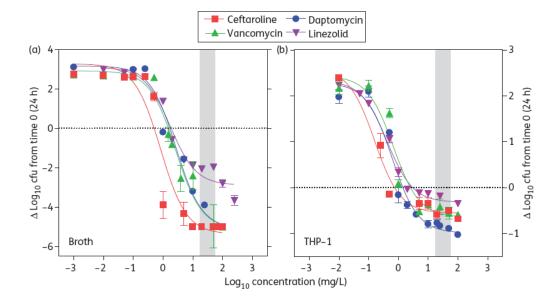


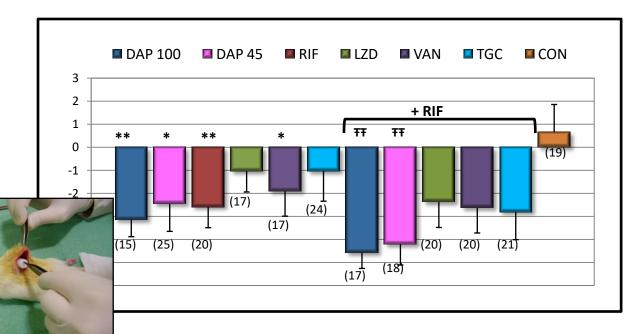
Debridement


Risk factors for failure after the 1st 30 days of treatment in post-surgical cases

MSSA (n=185, fail=60)	aHR	p	MRSA (n=59, fail=21)	aHR	p
Immunosupr. Therapy	3.40 (1.39-8.37)	0.008	Abnormal Rx at diagn.	4.49 (1.68-12.0)	0.003
Prosthesis age > 3 m	2.18 (1.04-4.56)	0.039	Vanco + Rifamp > 14d	0.29 (0.10-0.87)	0.027
Bacteremia	2.35 (1.04-5.36)	0.040			
Need for ≥2 debrid	5.36 (2.88-9.98)	<.001			
Levo + Rifampin > 14 d	0.42 (0.22-0.80)	0.008			



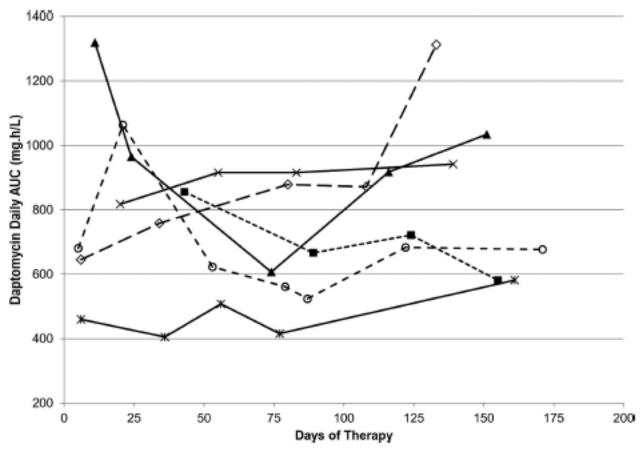



Different ability of Rifampin-based combinations on avoiding relapse

Baltch, 2008. AAC Stewart, 2009. AAC Garrigós, 2010. AAC Mélard, 2013. JAC

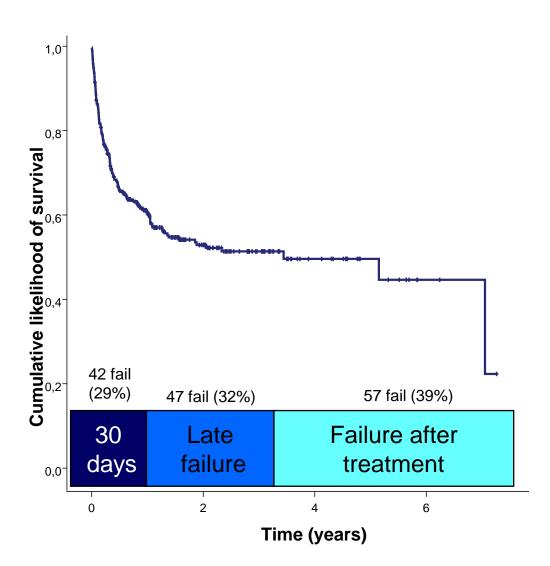
High doses of daptomycin (10 mg/kg/d) plus rifampin for the treatment of staphylococcal prosthetic joint infection managed with implant retention: a comparative study

Jaime Lora-Tamayo ^{a,*}, Jorge Parra-Ruiz ^b, Dolors Rodríguez-Pardo ^c, José Barberán ^d, Alba Ribera ^a, Eduardo Tornero ^e, Carles Pigrau ^c, José Mensa ^f, Javier Ariza ^a, Alex Soriano ^f


N=18 Acute staphylococcal PJI managed by DAIR Daptomycin (10 mg/kg/d) + Rifampin x 6 weeks

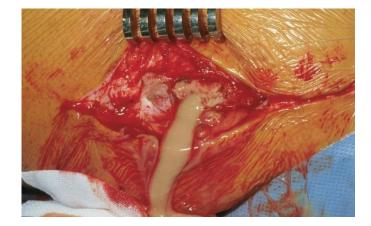
Outcome	Dapto + Rifa (n=18)	Historical cohort (n=44)	p
Clinical failure	9 (50%)	15 (34%)	0.27
Clinical failure while on treatment	2/9 (22%)	11/15 (73%)	0.03
Microbiological failure	5 (29%)	13 (30%)	1.00
Mocribiol fail. while on treatment	1/5 (20%)	9/13 (69%)	0.12

Lora-Tamayo, 2014. Diagn Microbiol Infect Dis


Pharmacokinetic Variability of Daptomycin during Prolonged Therapy for Bone and Joint Infections

Sylvain Goutelle,^{a,b,c} Sandrine Roux,^d Marie-Claude Gagnieu,^g Florent Valour,^d Sébastien Lustig,^e Florence Ader,^{d,e,f} Frédéric Laurent,^{b,e,f} Christian Chidiac,^{d,e,f} Tristan Ferry,^{d,e,f} on behalf of the Lyon Bone and Joint Infections Study Group

Goutell, 2016. Antimicrob Agents Chemother



Parameter	Early failure (Odds Ratio)	Late Failure (Hazard Ratio)	Fail. After Ther (Hazard Ratio)
Sex male	2.48 (1.19-5.19)		
Age (per year)		1.03 (1.00-1.07)	
Rheumatoid arthritis	3.88 (1.44-10.4)		
Immunosupr. Therapy		3.05 (1.30-7.14)	
Hematogenous PJI			2.46 (1.35-4.48)
MRSA		2.33 (1.25-4.33)	0.33 (0.12-0.92)
Bacteremia	5.03 (2.11-12.0)		
Polymicr. Infection	7.50 (3.23-17.4)		
CRP (per 100 mg/L)	1.52 (1.11-2.09)		
Sinus tract		1.88 (0.94-3.77)	
Abnormal Rx at diagn		2.28 (1.14-4.54)	
Symptoms duration (per day)			1.00 (1.00-1.01)
Need for ≥2 debridements		2.25 (1.11-4.56)	2.51 (1.27-4.98)
Rifampin		0.49 (0.26-0.91)	

Planctonic bacteria (early failure)

Biofilm-embedded bacteria (delayed failure)

Adaptive processes of *Staphylococcus aureus* isolates during the progression from acute to chronic bone and joint infections in patients

Less biofilm More virulence Less intracellular infection

. . .

More biofilm Less virulence More intracellular infection

Trouillet-Assant, 2016. Cell Microb

Serum Bactericidal Activity of Rifampin in Combination with Other Antimicrobial Agents against *Staphylococcus aureus*

CORINNE J. HACKBARTH, HENRY F. CHAMBERS, AND MERLE A. SANDE*

Department of Medicine, School of Medicine, University of California, San Francisco, and The Medical Service, San Francisco General Hospital, San Francisco, California 94110

Received 19 July 1985/Accepted 3 January 1986

TABLE 3. Comparison of rates of bacterial killing		
Drug(s) (concn [µg/ml])	6-h killing rate (log ₁₀ CFU/ml per h; mean ± SEM	
Nafcillin (40)	-0.24 ± 0.05^{a}	
Nafcillin-rifampin	-0.11 ± 0.04	
Vancomycin (30)	-0.23 ± 0.04^{a}	
Vancomycin-rifampin	-0.11 ± 0.02	
Teicoplanin (5)	-0.25 ± 0.05^{a}	
Teicoplanin-rifampin	-0.08 ± 0.02	
Clindamycin (10)	-0.11 ± 0.02^{a}	
Clindamycin-rifampin	-0.23 ± 0.03	
Erythromycin (5)	-0.12 ± 0.03^{a}	
Erythromycin-rifampin	-0.24 ± 0.04	
Trimethoprim (5)	-0.16 ± 0.06	
Trimethoprim-rifampin		
Ciprofloxacin (5)	-0.44 ± 0.03^{a}	
Ciprofloxacin-rifampin	-0.07 ± 0.01	
Pefloxacin (5)	-0.37 ± 0.05^{a}	
Pefloxacin-rifampin		
Rifampin (5)		
Control		

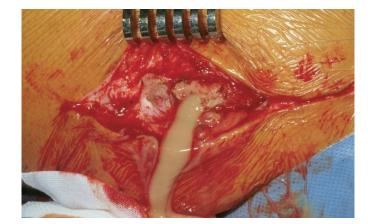
^{*a*} P < 0.02 compared with the drug in combination with rifampin.

Hackbarth, 1986. AAC

REVIEW

10.1111/1469-0691.12003

Antimicrobial treatment concepts for orthopaedic device-related infection


P. Sendi^{1,2,3} and W. Zimmerli¹

Start and dosage of rifampin therapy

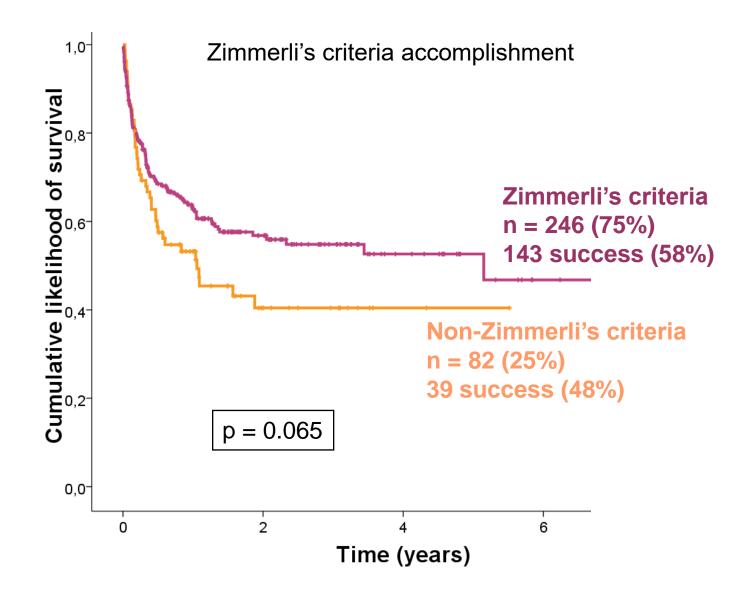
No study has investigated the optimal time for starting rifampin therapy in patients with staphylococcal ODRI. Concerns regarding liver toxicity or drug interactions with compounds

become clinically relevant after several days [18]. However, it is prudent not to use rifampin in the early course of infection, for the following reasons. First, perioperative rifampin therapy increases the risk of superinfection with rifampinresistant staphylococci by selection pressure on the local flora [19]. Second, emergence of resistance is highest when the bacterial load is high [7]. Thus, there are arguments for

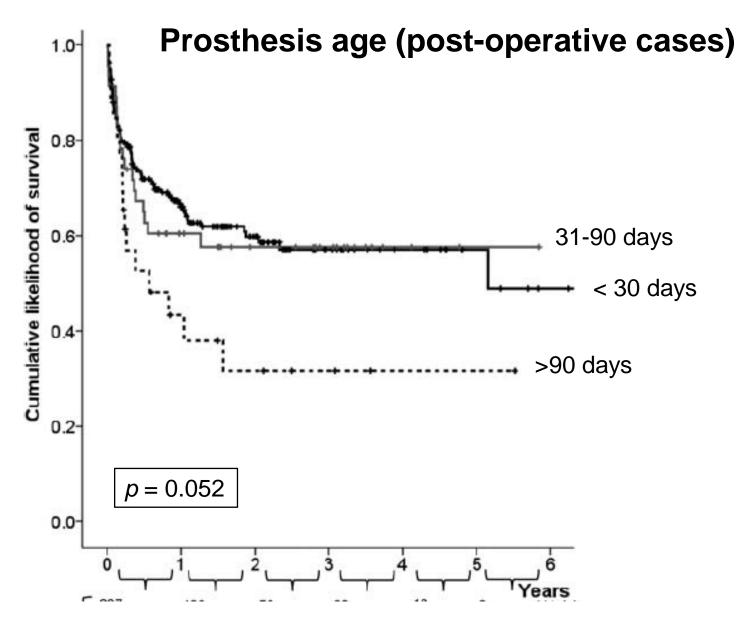
Planctonic bacteria (early failure)

- B-lactams
- Vancomycin
- Daptomycin combination

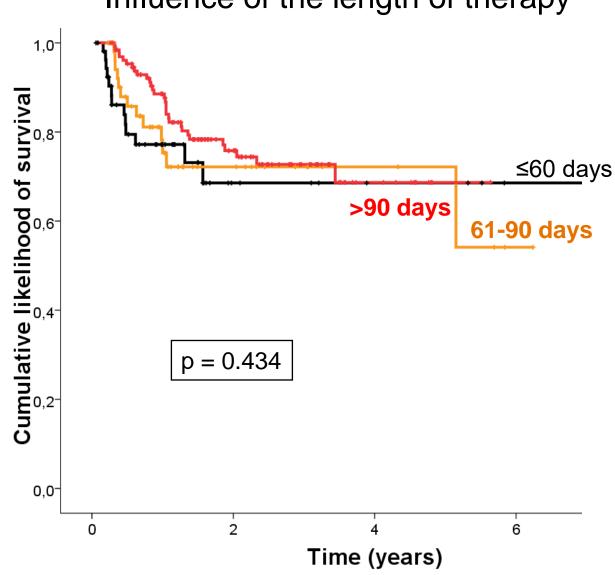
First 5-10 d after debridement


Biofilm-embedded bacteria (delayed failure)

Rifampin-based combo


Afterwards

Ariza, 2017. Enferm Infecc Microbiol Clin



Influence of the length of therapy

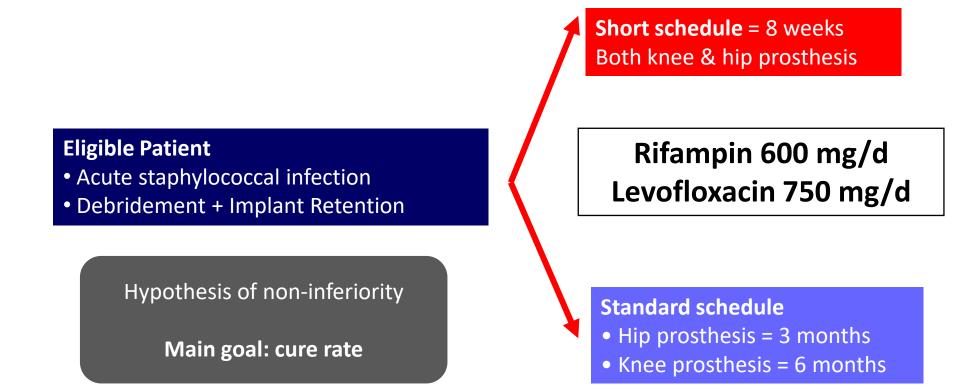
Ref	Design	N (dair)	Etiology	Conclusions
Byren, 2009	Observational Retrospective 1 center	112	Various	Length of therapy did not predict the likelihood of failure
Bernard, 2010	Observarional, retrospective, 1 center	60	Various (mostly staphylococci)	6 weeks ≈ 12 weeks
Puhto, 2012	Observational, retrospective, pre-post design 1 center	86	Various (mostly staphylococci)	8 weeks ≈ 12 weeks (hips) or 6 weeks (knees)
Chaussade, 2017	Observational, retrospective, multicenter	87	Various (mostly staphylococci)	6 weeks ≈ 12 weeks

Short Communication

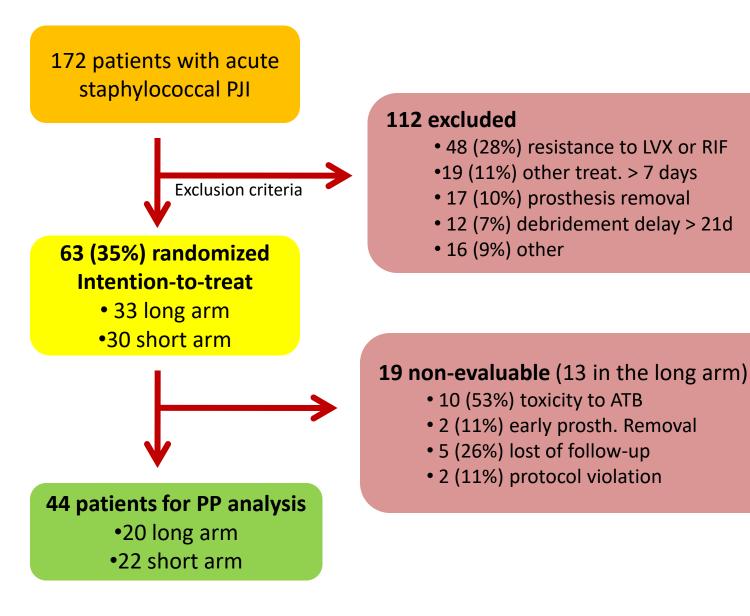
Short- versus long-duration levofloxacin plus rifampicin for acute staphylococcal prosthetic joint infection managed with implant retention: a randomised clinical trial *

Jaime Lora-Tamayo ^{1,*}, Gorane Euba ², Javier Cobo ³, Juan Pablo Horcajada ⁴, Alex Soriano ⁵, Enrique Sandoval ⁶, Carles Pigrau ⁷, Natividad Benito ⁸, Luis Falgueras ⁹, Julián Palomino ¹⁰, María Dolores del Toro ¹¹, Alfredo Jover-Sáenz ¹², José Antonio Iribarren ¹³, Mar Sánchez-Somolinos ¹⁴, Antonio Ramos ¹⁵, Marta Fernández-Sampedro ¹⁶, Melchor Riera ¹⁷, Josu Mirena Baraia-Etxaburu ¹⁸, Javier Ariza ², Prosthetic Joint Infection Group of the Spanish Network for Research in Infectious Diseases—REIPI

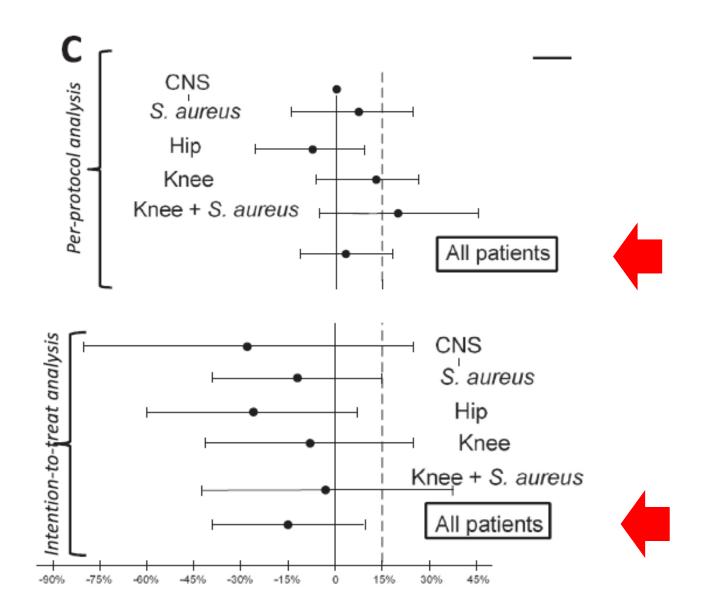
Int J Antimicrob Agents. 2016; 48: 310-6



• Design –

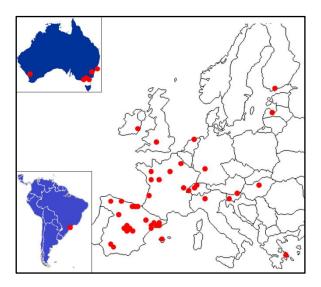

open, comparative, randomized clinical trial

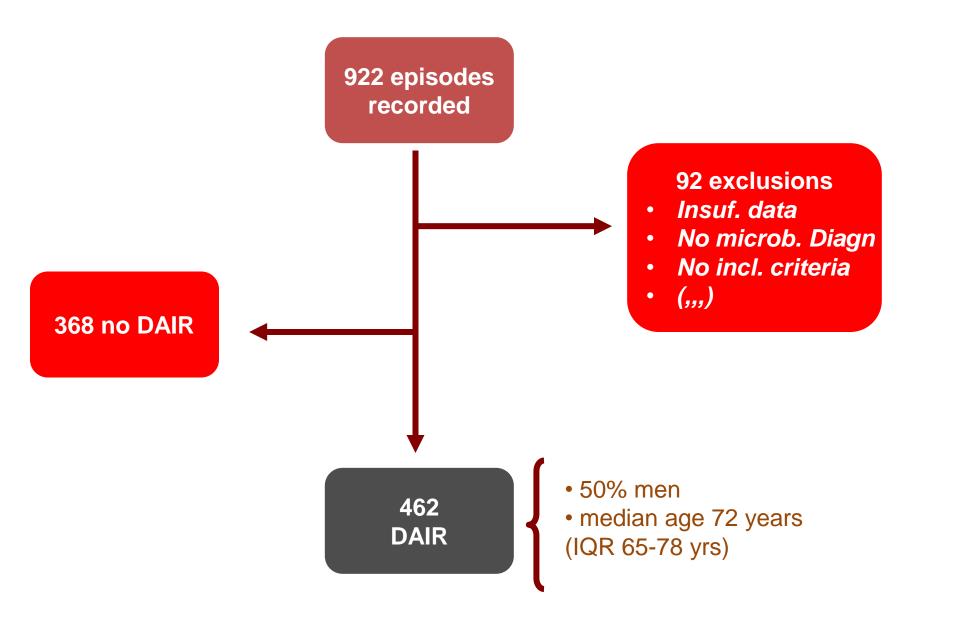
• Setting – 17 Spanish hospitals (REIPI), from 2009 to 2013



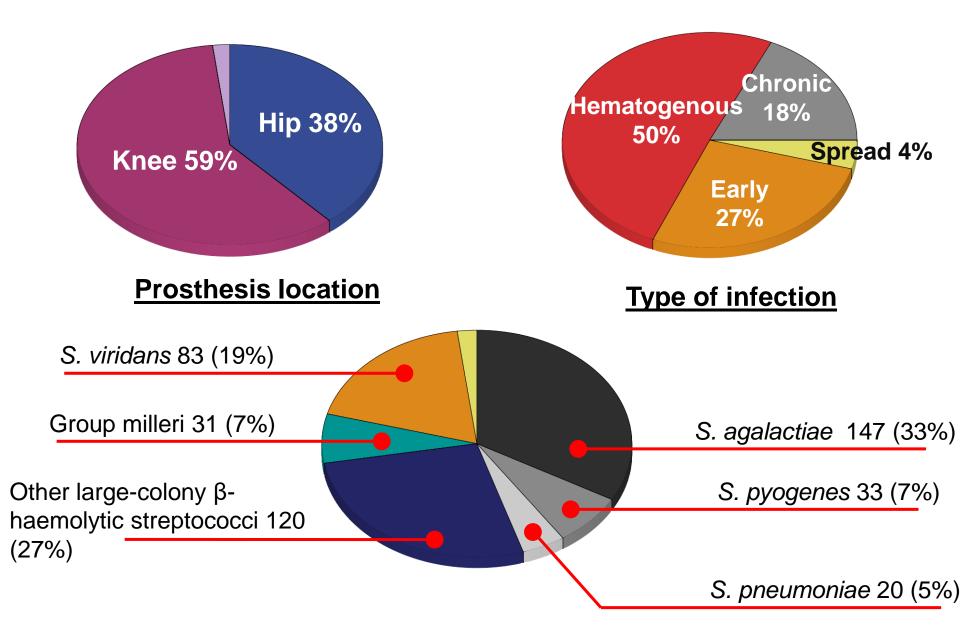
 $\Delta = 15\%$; $\alpha = 0.05$; $1 - \beta = 0.80$; loss rate = $10\% \rightarrow 195$ patients


		Long arm (n	=33)	Short arm (n=30)	p	
	Polymicrobial infection	9 (27%)		2 (7%)	0.046	
Cumulative likelihood of survival	PP analysis Overall success 93% Median follow-up 355 d Mean surv time: 45 m P= 0.763	1,0- Cumulative likelihood of survival 0,4- 0,0- 0,0-	Ove Me	<u>analysis</u> erall success 41 (65% an surv time 30 m).156	5)	Short arm Long arm

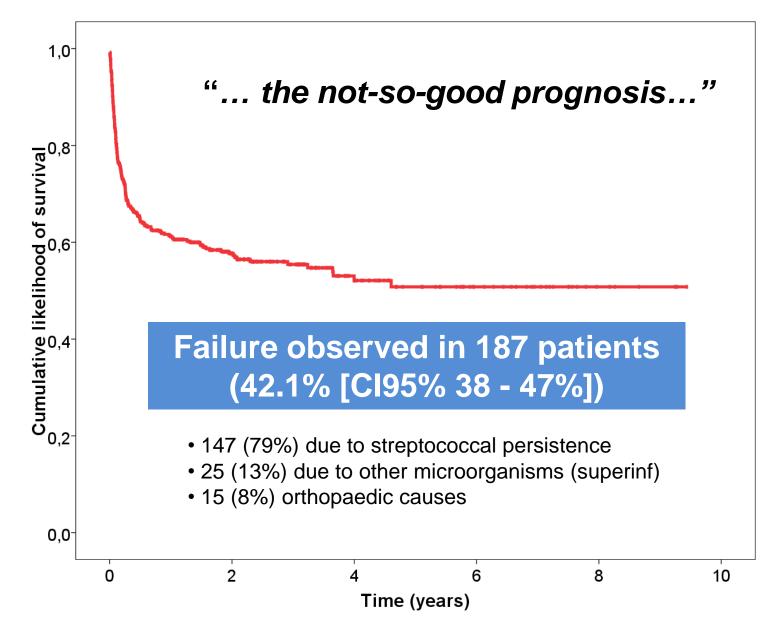

STREPTOCONGA

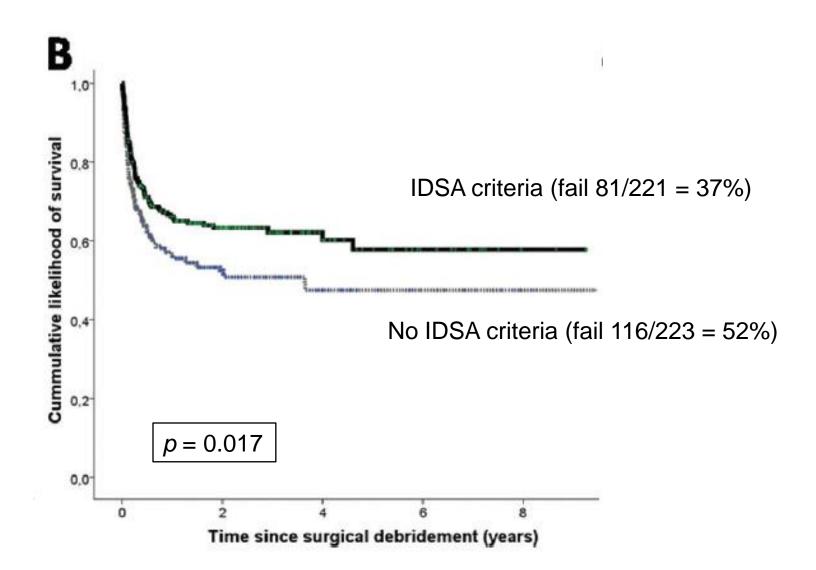


The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study

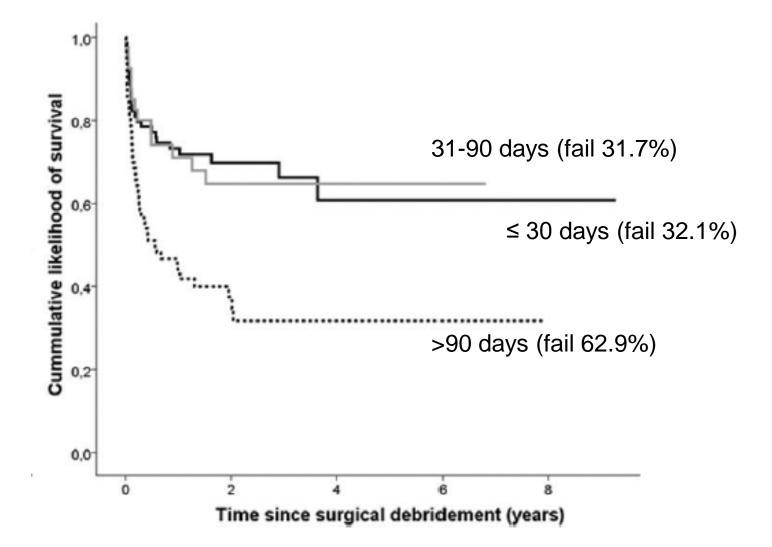

Jaime Lora-Tamayo, ^{1,2} Éric Senneville, ³ Alba Ribera, ^{2,4,5} Louis Bernard, ^{6,7} Michel Dupon, ⁸ Valérie Zeller, ⁹ Ho Kwong Li, ⁵ Cédric Arvieux, ^{7,10} Martin Clauss, ¹¹ Ilker Uçkay, ¹² Dace Vigante, ¹³ Tristan Ferry, ¹⁴ José Antonio Iribarren, ¹⁵ Trisha N. Peel, ¹⁶ Parham Sendi, ¹⁷ Nina Gorišek Miksić, ¹⁸ Dolors Rodríguez-Pardo, ^{2,19} María Dolores del Toro, ^{2,20} Marta Fernández-Sampedro, ^{2,21} Ulrike Dapunt, ²² Kaisa Huotari, ²³ Joshua S. Davis, ²⁴ Julián Palomino, ^{2,20} Danielle Neut, ²⁵ Benjamin M. Clark, ²⁶ Thomas Gottlieb, ²⁷ Rihard Trebše, ²⁸ Alex Soriano, ^{2,29,30} Alberto Bahamonde, ³¹ Laura Guío, ^{2,32} Alicia Rico, ³³ Mauro J. C. Salles, ³⁴ M. José G. Pais, ³⁵ Natividad Benito, ^{2,36} Melchor Riera, ^{2,37} Lucía Gómez, ³⁸ Craig A. Aboltins, ³⁹ Jaime Esteban, ⁴⁰ Juan Pablo Horcajada, ⁴¹ Karina O'Connell, ⁴² Matteo Ferrari, ⁴³ Gábor Skaliczki, ⁴⁴ Rafael San Juan, ^{1,2} Javier Cobo, ^{2,45} Mar Sánchez-Somolinos, ^{2,46} Antonio Ramos, ⁴⁷ Efthymia Giannitsioti, ⁴⁸ Alfredo Jover-Sáenz, ⁴⁹ Josu Mirena Baraia-Etxaburu, ⁵⁰ José María Barbero, ⁵¹ Peter F. M. Choong, ⁵² Nathalie Asseray, ^{7,53} Séverine Ansart, ^{7,54} Gwenäel Le Moal, ^{7,55} Werner Zimmerli, ¹¹ and Javier Ariza^{2,4}; for the Group of Investigators for Streptococcal Prosthetic Joint Infection⁸

- 52 hospitals (15 nations)
- 2003-2012
- PJI caused by streptococci
 - No superinfections
 - Polymicrobial cases allowed



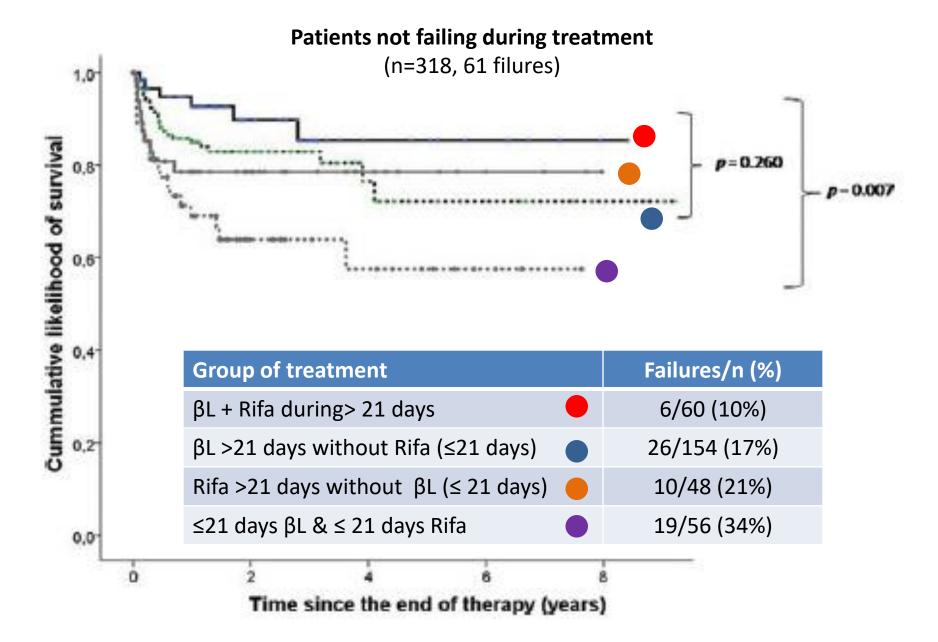

	DIFFERENCES A STREPTOCOCCA		S. agalactiae	S. pyogenes	S. pneumoniae	Other large-col beta-haemolyt	Group milleri	S. viridans	р
	Sex (women)		57%	55%	45%	37%	58%	58%	0.013
	Age (years)		72	70	75	71	75	72	0.206
	Renal chronic in	npairment	8%	18%	15%	10%	10%	6%	0.307
	Rheumatoid art	hritis	4%	18%	5%	9%	7%	15%	0.033
	Immunosuppres	sive therapy	7%	18%	5%	12%	10%	13%	0.318
	Location (knee)		59%	58%	60%	73%	42%	46%	0.001
	Revision prosthe	esis	22%	18%	20%	20%	26%	31%	0.508
		Early (< 3 m)	31%	49%	5%	24%	19%	28%	
\langle	Type of infection	Hematogenous	47%	42%	90%	50%	55%	47%	0.007
	meetion	Chronic (>3 m)	16%	6%	5%	22%	26%	21%	
	Polimicrobial inf	ection	12%	21%	10%	13%	16%	27%	0.065

Streptococcal PJI managed by DAIR



Streptococcal PJI managed by DAIR

Failure rate according to prosthesis age (post-operative cases)



Adjusted Hazard Ratio

	All patients (n=444, fail 187)	Cases not failing within the first 30 d. (n=389, fail = 132)
Renal chronic failure	1.55 (0.97 – 2.48)	-
Rheumatoid arthritis	2.36 (1.50 – 3.72)	-
Immunosupr. therapy	-	1,66 (0.99-2.18)
Revision prosthesis	1.37 (0.96 – 1.90)	1.47 (0.99-2.18)
Chronic inf (>3 m)	2.20 (1.51 – 3.20)	1.69 (1.10-2.60)
Bacteremia	1.69 (1.19 – 2.40)	-
Symptoms dur. (x day)	-	1.00 (1.00-1.00)
Exchange remov. Comp	0.60 (0.44 – 0.81)	0.65 (0.50-0.93)
Need for ≥2 debrid.	1.38 (0.96 – 1-99)	1.68 (1.10-2.57)
Rifampin (per day)	-	0.98 (0.96-0.998)
Glyicopeptides (per day)	-	1.04 (1.02-1.06)
Co-trimoxazole (per day)	-	1.04 (1.002-1.08)

	Early failure (n=444, 55 fails)	Late failure (n=389; 71 fails)	Fail Anter (n=318, 61 fals)
Sex (female)	-	0.51 (0.30-0.85)	
Age (per year)	1.04 (1.00-1.07)		
Rheumatoid arthritis	3.33 (1.40-7.93)		
Immunosuppressive ther.	-	2.64 (1.46-4.79)	
Revision prosthesis	-	1.77 (1.07-2.93)	
Chronic infection (>3 mo)	1.41 (1.10-1.81)		2.24 (1.24-4.05)
Bacteremia	2.23 (1.80-4.20)		
S. Pyogenes	3.31 (1.41-7.77)		
Symptoms duration > 7d	-	1.70 (1.05-2.75)	
Polyethylene Exchange	-		0.44 (0.26-0.76)
≥2 desbridements	-	2.45 (1.45-4.15)	
B-lactams (no Rifa)		-	0.48 (0.28-0.84)
B-lactams (plus Rifa)		-	0.34 (0.12-0.96)
Quinolones (plus Rifa)		0.21 (0.03-1.54)	-
Glycopeptides (no Rifa)		2.82 (1.43-5.53)	-

- Multicenter study are needed
 - so we may produce statistically robust studies
 - so the sample keeps homogeneity

- Re. Staphylococcal PJI managed by DAIR
 - the success rate is ~ 55%
 - treatment with rifampin ameliorates the prognosis, including MRSA
 - MRSA infection does not necessarily carry a worse prognosis
 - treatment in the first days must focus planctonic bacteria
 - 8 weeks of treatment may be enough as long as things go well

- •Re. Streptococcal PJI managed by DAIR
 - the success rate is ~ 60%
 - no big differences are seen between streptococcal species
 - the mainstay of treatment are beta-lactams
 - addition of rifampin may ameliorate the prognosis
- Re. management with DAIR
 - Zimmerli's / IDSA criteria must be followed
 - the sooner the patient is operated the better, but no specific time limits have been found
 - post-operative PJI with prosthesis age <3 months are probably suitable for DAIR
 - the exchange of removable increases the odds of success

MERCI BEAUCOUP DE VOTRE ATTENTION

jaime@lora-tamayo.es