7th Annual Meeting of the European Bone and Joint Infection Society

7 - 9 October 2021 · Ljubljana · Slovenia

Development of phage therapy to treat staphylococci bone and joint infections in France: isolation and characterization of seventeen novel anti-*Staphylococcus* bacteriophages

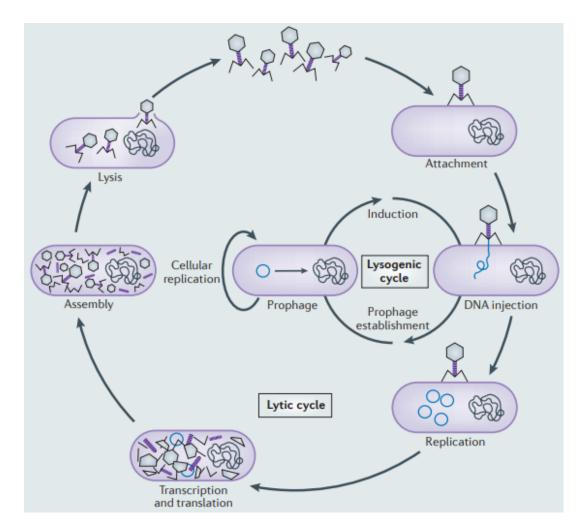
<u>Camille Kolenda</u>, Mathieu Medina, Leslie Blazere, Tiphaine Legendre, Mélanie Bonhomme, Tiphaine Roussel-Gaillard, Patricia Simoes-Martins, Anne Tristan, Tristan Ferry, Frédéric Laurent, PHAGE*in*Lyon consortium

Clinical Microbiologist, PharmD, PhD student,

Programme

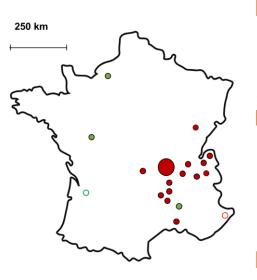
IN-PERSON & ONLINE

Lyon University Hospital – Department of Bacteriology CIRI Lyon – Team « Pathogenesis of Staphylococci Infections »



Context

Bacteriophages = viruses specific of bacteria



Phage therapy : a promising
 alternative and adjunctive therapy
 to antibiotics:

- > Antimicrobial resistance
- Difficult to treat/chronic infections:
 - Synergistic effects with antibiotics
 - Antibiofilm effect

Salmond et al. Nature 2015

Experience of phage therapy in Lyon, France

3

T. Ferry et al. EBJIS 2021 CMI Oct 2021

29 patients since 2017 including 26 with BJI

- Compassionate use
- Under supervision of French Drug National Agency (ANSM)
- Origin of phages:

- Pherecydes Pharma (France)
- Queen Astrid Hospital (Belgium)

Limits of phage therapy development:

- Limited number of phages/active against few bacterial species : mainly S. aureus, P. aeruginosa
- Time required to perform the phagogram/obtain phages

ANSM supports the development of an <u>academic platform</u> for the <u>production</u> and <u>validation</u> of use of therapeutic phages

Development of an academic production of therapeutic phages

Isolate, characterize, produce and purify phages active against various pathogens for human administration according to drug agencies' requirements

PHAG-QNE

National research grant : 2.8 M€

Proof of concept: seventeen novel anti S. aureus phages

- 5
- Myoviridae : 14 Kayvirus/3 Silviavirus

Silviavirus more active than Kayvirus phages against S. aureus strains :

- Activity against 70 to 90% or 10 to 67% of strains respectively
- Phage V1SA20 with the widest activity spectrum

Phages more active against MSSA than MRSA strains :

Median activity against 76% vs 38% of MSSA and MRSA strains respectively

		Kayvirus															Silviavirus				
Phage	VISAI	V1SA5	V1SA6	VISAZ	V1SA8	V1SA9	V15A10	VISAII	V15A12	V15A13	V1SA14	V1SA15	V15A16	V15A18	V1SA19	V15A20	V15A22				
MSSA	82	41	76	82	71		71	76	88	18	76	12	47	65	82	<u>94</u>	82				
MRSA	38	15	23	46	54	46	46	38	38	0	31	15	15	38	54	<u>85</u>	62				
Total	63	30	53	67	63	63	60	60	67	10	57	13	33	53	70	<u>90</u>	73				

% of activity of phages against a panel of S. aureus strains representative of clinical and genetic diversity

Proof of concept: seventeen novel anti S. aureus phages

- 6
- Myoviridae : 14 Kayvirus/3 Silviavirus

Silviavirus more active than Kayvirus phages against S. aureus strains :

- Activity against 70 to 90% or 10 to 67% of strains respectively
- Phage V1SA20 with the widest activity spectrum

Phages more active against MSSA than MRSA strains :

Median activity against 76% vs 38% of MSSA and MRSA strains respectively

		Kayvirus															Silviavirus			
Phage	VISAI	V1SA5	V1SA6	VISA7	V1SA8	V1SA9	V15A10	VISAII	V15A12	V15A13	V1 SA 14	V1 SA1 5	V15A16	V15A18	V15A19	V1 SA20	V1 SA22			
MSSA	82	41	76	82	71	76	71	76	88	18	76	12	47	65	82	<u>94</u>	82			
MRSA	38	15	23	46	54	46	46	38	38	0	31	15	15	38	54	<u>85</u>	62			
Total	63	30	53	67	63	63	60	60	67	10	57	13	33	53	70	90	73			

% of activity of phages against a panel of S. aureus strains representative of clinical and genetic diversity

Activity against coagulase negative staphylococci (CNS)

Kayvirus more active than Silviavirus phages against CNS strains

- Mainly S. capititis, S. lugdunensis
- Low activity against S. epidermidis

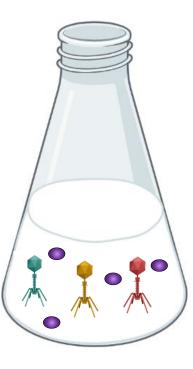
	Kayvirus														Silviavirus				
Phage/ Species	n	VISAI	V1SA5	V1SA6	VISA7	V1SA8	V1SA9	VISAIO	VISAII	V1SA12	V15A13	VISA14	V1SA15	V15A16	V15A18	V1SA19	V15A20	V15A22	
S. epidermidis	10	0	0	0	1	2	4	0	1	0	0	0	0	0	0	1	1	1	
S. capitis	5	4	3	3	4	4	4	4	4	4	3	3	4	3	3	0	0	0	
S. lugdunensis	5	2	2	4	4	3	4	3	4	2	1	2	4	4	3	2	1	1	
S. pseudintermedius	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
S. caprae	3	2	0	2	2	2	2	1	1	1	1	2	0	2	2	0	0	0	
S. haemolyticus	3	1	0	0	1	1	1	0	0	0	0	0	1	0	0	1	0	0	
S. warneri	3	1	0	0	1	0	0	1	0	0	1	0	2	2	0	0	0	0	
Total	33	10	5	9	13	12	15	9	10	7	6	7	11	11	8	5	2	2	

Activity of phages against a panel of CNS strains causing BJI

Activity against coagulase negative staphylococci (CNS)

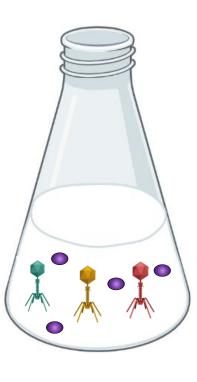
Kayvirus more active than Silviavirus phages against CNS strains

- Mainly S. capititis, S. lugdunensis
- Low activity against S. epidermidis

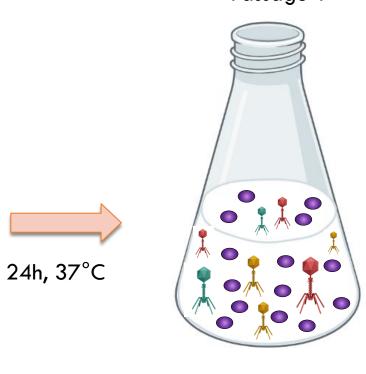

	Kayvirus															Silviavirus			
Phage/ Species	n	VISAI	V1SA5	V1SA6	VISA7	V1SA8	V1SA9	VISAIO	VISAII	V1SA12	V15A13	VISA14	V1SA15	V15A16	V15A18	V1SA19	V15A20	V15A22	
S. epidermidis	10	0	0	0	1	2	4	0	1	0	0	0	0	0	0	1	1	1	
S. capitis	5	4	3	3	4	4	4	4	4	4	3	3	4	3	3	0	0	0	
S. lugdunensis	5	2	2	4	4	3	4	3	4	2	1	2	4	4	3	2	1	1	
S. pseudintermedius	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
S. caprae	3	2	0	2	2	2	2	1	1	1	1	2	0	2	2	0	0	0	
S. haemolyticus	3	1	0	0	1	1	1	0	0	0	0	0	1	0	0	1	0	0	
S. warneri	3	1	0	0	1	0	0	1	0	0	1	0	2	2	0	0	0	0	
Total	33	10	5	9	13	12	15	9	10	7	6	7	11	11	8	5	2	2	

Activity of phages against a panel of CNS strains causing BJI

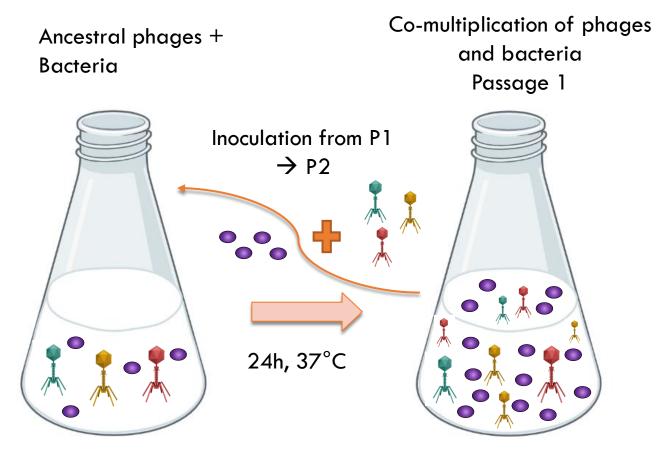
- 9
- **Natural coevolution** of phages/bacteria with **mutual adaptations** in environment
- Phage training : force phage evolution to increase activity/enlarge activity spectrum

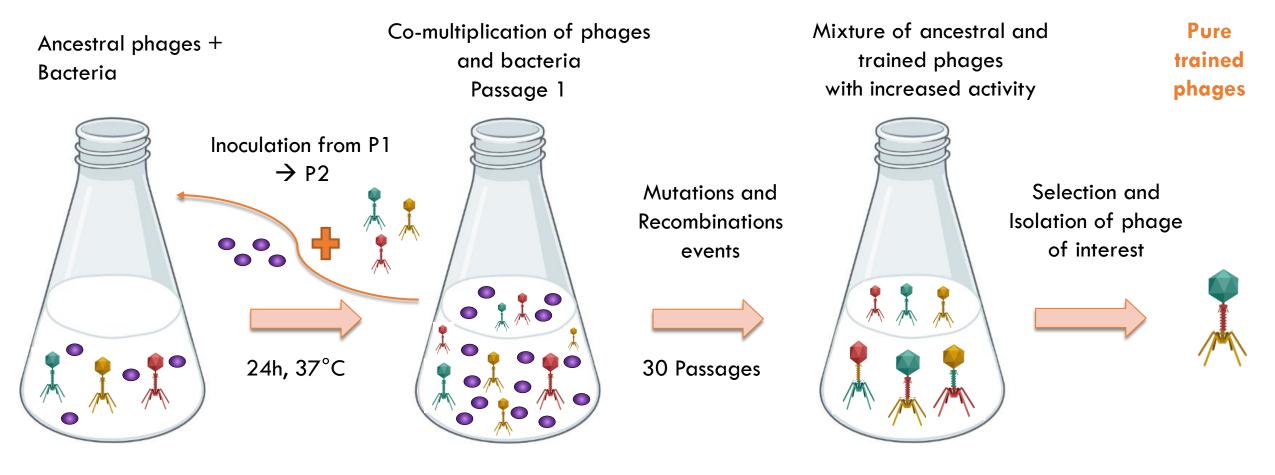

- **Natural coevolution** of phages/bacteria with **mutual adaptations** in environment
- □ Phage training : **force phage evolution** to increase activity/enlarge activity spectrum

Ancestral phages + Bacteria



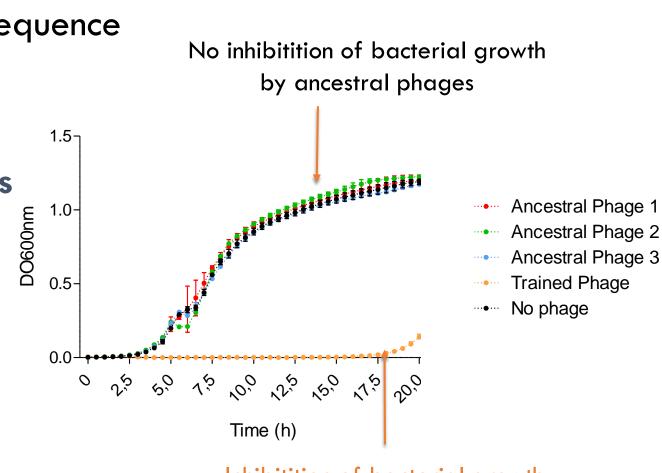
- **Natural coevolution** of phages/bacteria with **mutual adaptations** in environment
- Phage training : force phage evolution to increase activity/enlarge activity spectrum


Ancestral phages + Bacteria


Co-multiplication of phages and bacteria Passage 1

- **Natural coevolution** of phages/bacteria with **mutual adaptations** in environment
- Phage training : force phage evolution to increase activity/enlarge activity spectrum

- Natural coevolution of phages/bacteria with mutual adaptations in environment
- Phage training : force phage evolution to increase activity/enlarge activity spectrum


Phage training – Staphylococcus epidermidis

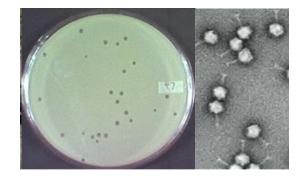
14

 7 S.epidermidis strains of different sequence types responsible for BJI

Activity increase against 2/7 strains

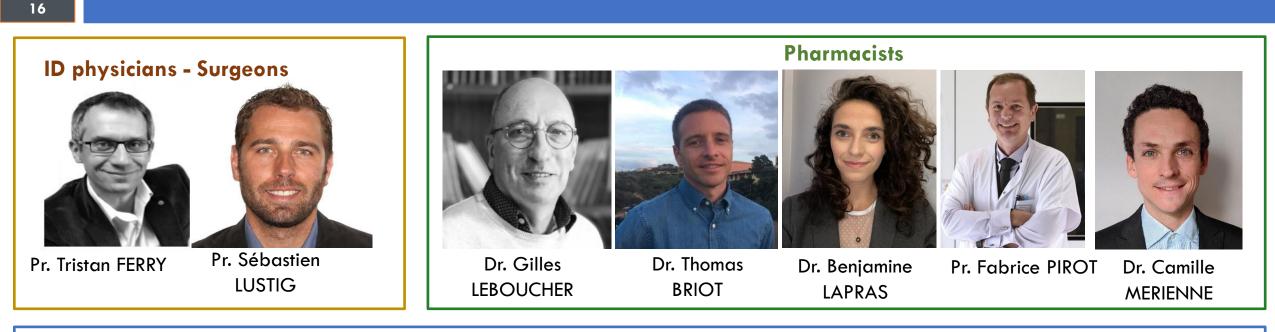
- Including one strain belonging to ST2
- = major antibiotic resistant S. epidermidis clone causing BJI
- Obtained trained phage was active against
 60% of a collection of ST2 strains (n=30)
 versus no activity of ancestral phages

Inhibitition of bacterial growth by trained phages


Conclusion

Description of a large collection of anti-staphylococci phages with complementary activities against S. aureus and CNS

- Activity against 90% of S. aureus strains
- Activity against CNS species depended on bacterial species
- Phage training to increase activity against S. epidermidis strains


□ On-going and future work ...

- Isolation of other phages (S. epidermidis, E. coli) and pursuit of phage training
- Set up of protocols for pharmaceutical production and purification of these phages according to ANSM requirements
- Clinical cohorts of compassionate use and clinical trials

Acknowledgements - PHAGEinLYON& team

Microbiology lab

Pr. Frédéric LAURENT

Mathieu

MEDINA

Dr. Floriane LAUMAY

Leslie BLAZERE

Tiphaine

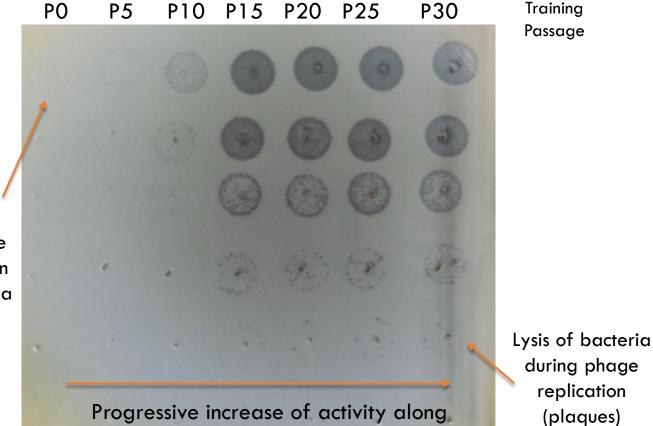
LEGENDRE

Emilie

HELLUIN

Mélanie BONHOMME

Phage training – Staphylococcus epidermidis


17

8 strains of different ST responsible of BJI

Activity increase against 2/8 strains

- Including one strain belonging to ST2
- = major antibiotic resistant S. epidermidis clone causing BJI
- Increased activity of obtained trained phage against 60% of a collection of ST2 strains

No phage replication on bacteria

phage training process