

36ème Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse

Lundi 12 et mardi 13 décembre 2016 Palais des Congrès de Paris

Physiopathologies des infections ostéo-articulaires liées aux staphylocoques à coagulase-négative : spécificité de l'espèce *S. lugdunensis*

<u>Y. Maali</u>, L. d'Anthouard, P. Martins-Simões, A. Jammot, A. Monteix, F. Valour, F. Vandenesch, T. Ferry, F. Laurent, S. Trouillet-Assant

Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon

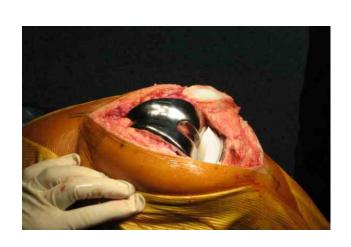
Equipe : Pathogénèse des infections à staphylocoques

Lyon

Introduction

Infections ostéo-articulaires (IOA)

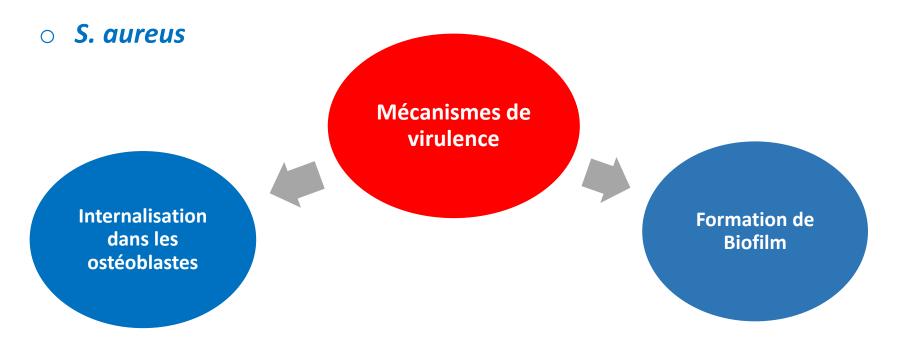
Mortalité (5%) et morbidité (40%)

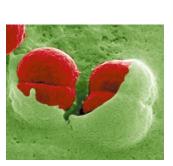

Coût individuel & sociétal

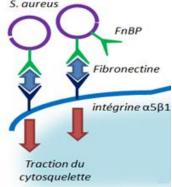
Prise en charge longue et coûteuse

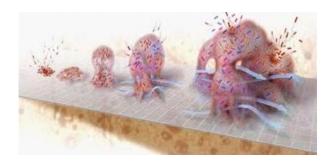
35 000 IOA/an en France*

Enjeu majeur de santé publique






*Grammatico et al., 2012, J Hosp Infect


Introduction

Staphylococcus: Première étiologie des IOA

Introduction

Staphylococcus: Première étiologie des IOA

- Staphylocoques à Coagulase-negative (SCN)
 - S. epidermidis
 - S. capitis
 - S. lugdunensis
 - S. warneri

...

- Considérés comme une seule entité microbiologique
- Prise en charge et traitements uniformes
- Mécanismes physiopathologiques peu étudiés

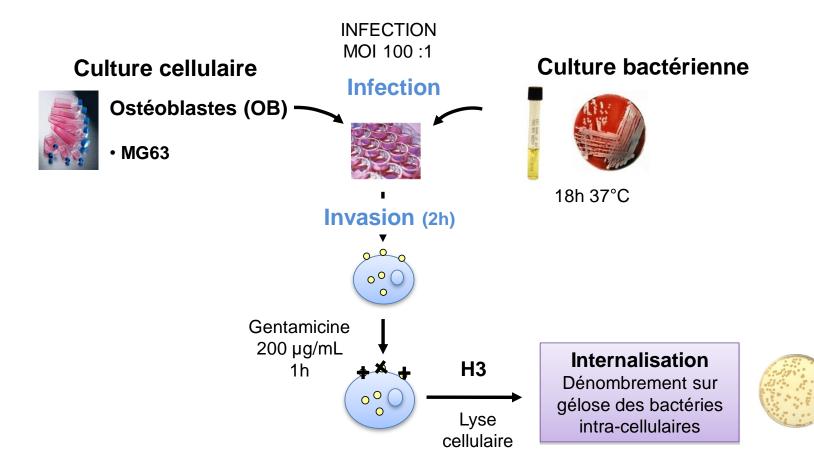
Problématique

Quels sont les mécanismes physiopathologiques impliqués dans les IOA aux SCN?

- Adapter les prises en charge préventives et curatives des IOA
- Définir de nouvelles cibles thérapeutiques potentielles

Approche

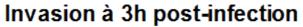
Recueil - Critères d'inclusions

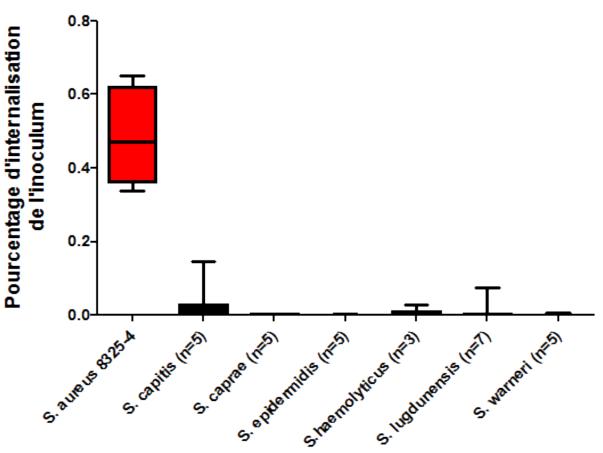

- Souches **SCN** issues d'IOA monomicrobiennes
- Au minimum 3 prélèvements positifs

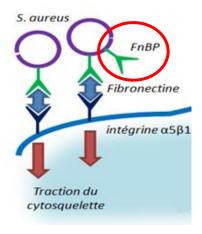
- S. epidermidis n=5
 S. capitis n=5
 S. caprae n=5
 S. haemolyticus n=3
 S. warneri n=5
 S. lugdunensis n=7

 30 souches
 + souches de référence
 + témoins positifs
 + témoins négatifs
 - Internalisation dans les cellules osseuses
 - Capacité de formation du Biofilm

Méthode - Invasion intracellulaire

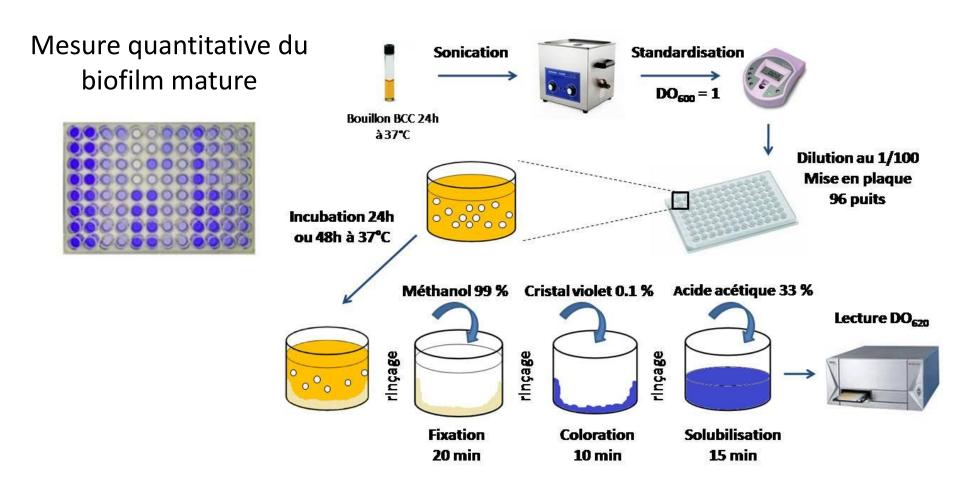

Gentamicin Protection assay (GPA)




MOI: Multiplicity of infection

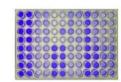
Résultats - Invasion intracellulaire

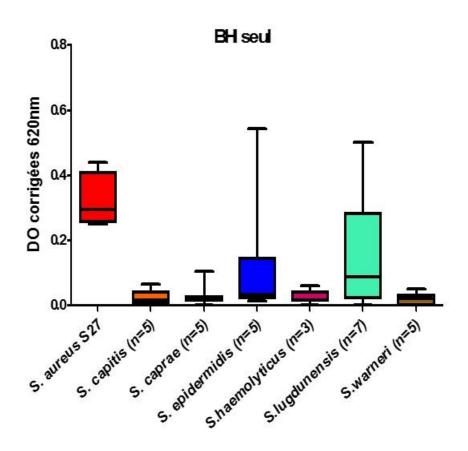
Gentamicin Protection assay



Absence FnBP-like

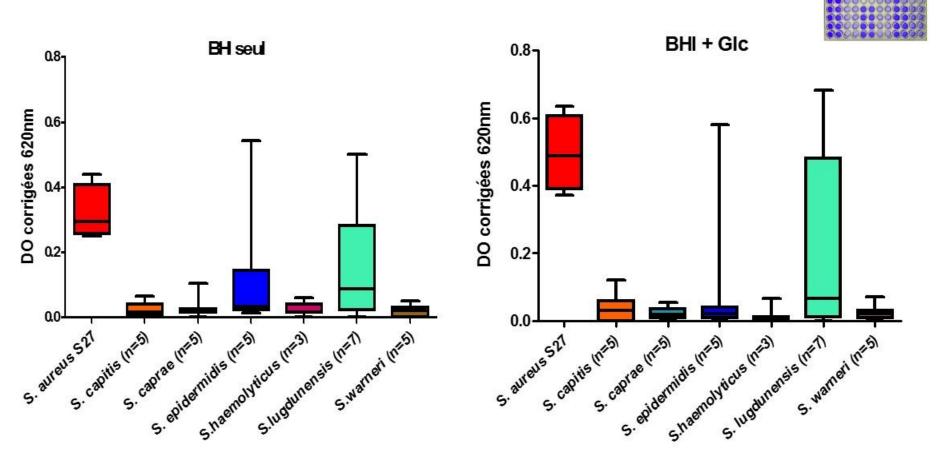
L'internalisation des bactéries dans les cellules osseuses ne semble pas être un mécanisme impliqué dans les IOA des SCN


Méthode - Biofilm

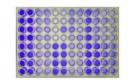

Technique de coloration au cristal violet

Résultats - Biofilm

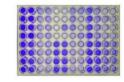
Méthode: Etude du biofilm à 24h par coloration au cristal violet



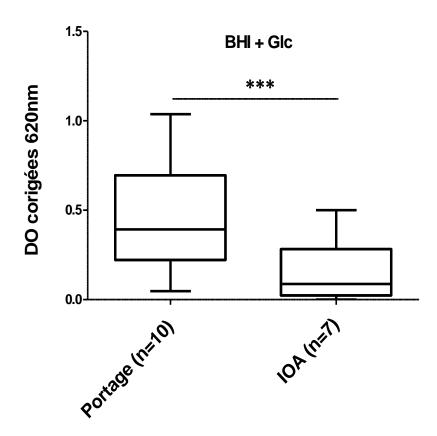
• S. lugdunensis forme un biofilm à 24h


Résultats - Biofilm

Méthode: Etude du biofilm à 24h par coloration au cristal violet


- S. lugdunensis forme un biofilm à 24h
- Le glucose ne semble pas être un activateur de la formation de biofilm
- Variabilité intra-espèce au sein de S. lugdunensis

1) Biofilm chez S. lugdunensis caractéristique des souches d'IOA?



• Intégration de **10** souches de **portages nasal** de *S. lugdunensis*

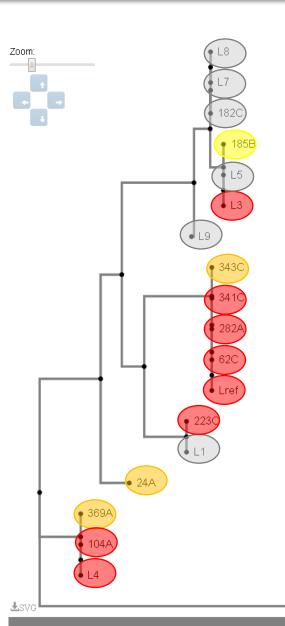
1) Biofilm chez S. lugdunensis caractéristique des souches d'IOA?

• Intégration de 10 souches de portages nasal de S. lugdunensis

Biofilm souches de portage significativement supérieur au biofilm souches cliniques

2) Variabilités intra-espèce expliquées par des variabilités génétiques ?

MLST (Multilocus sequence typing)


Multi-Virulence-Locus Sequence Typing of *Staphylococcus lugdunensis* Generates Results Consistent with a Clonal Population Structure and Is Reliable for Epidemiological Typing

Jennifer Didi, a Ludovic Lemée, a,b Laure Gibert, a,b Jean-Louis Pons, a Martine Pestel-Carona,b

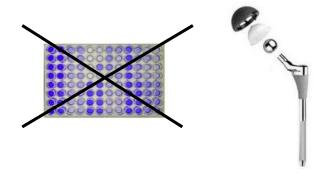
- aroE
- dat
- ddl
- gmk
- Idh
- recA
- yqiL

Base de données MLST *S. lugdunensis* http://bigsdb.pasteur.fr/staphlugdunensis/

Détermination des Sequence Type (ST) pour chaque souche (Portages et IOA)

Origine	ST	
IOA	41	
IOA	41	
Portage	41	
Portage	44	
IOA	44	
IOA	44	
IOA	25	
Portage	27	
Portage	29	
IOA	29	
Portage	46	
Portage	38	
Portage	38	
IOA	38	

Arbre de phylogénie basé sur les séquences de 7 gènes de ménages


Classification Christensen et al, 1985

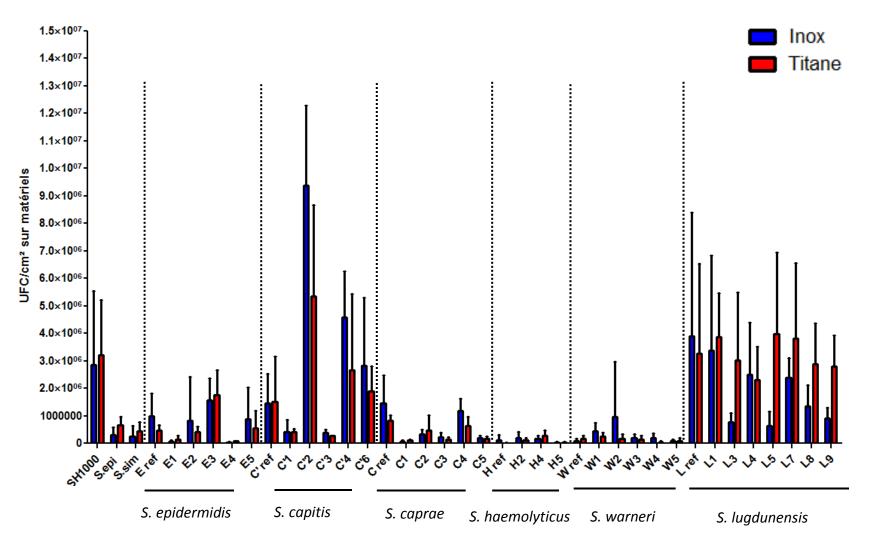
- Non producteur
- Faiblement producteur
- Moyen producteur
- Fort producteur

Corrélation entre le placement dans l'arbre et le niveau de production de biofilm

Méthode - Biomatériaux

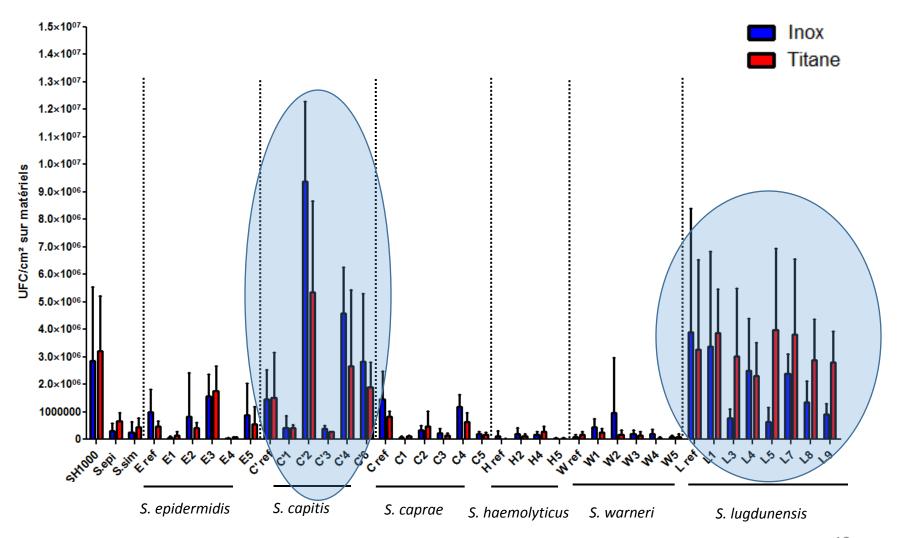
- Cons impliqués dans les IOA sur matériels
 - Inox
 - Titane

Adaptation du modèle in vitro d'étude du biofilm



Système calgary sur biomatériaux

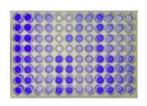
Plus proche des conditions physiopathologiques


Résultats - Biomatériaux

Biofilm sur matériels à 24h d'incubation

Résultats - Biomatériaux

Biofilm sur matériels à 24h d'incubation



- S. lugdunensis et S. capitis forment un biofilm sur matériels
- Préférences selon le matériel

Conclusion

Espèces	Internalisation	Biofilm sur plastique	Biofilm sur matériels
S. capitis	Ø	Ø	+
S. caprae	Ø	Ø	Ø
S. epidermidis	Ø	Ø	Ø
S. lugdunensis	Ø	+	+
S. haemolyticus	Ø	Ø	Ø
S. warneri	Ø	Ø	Ø

Nécessité de mimer au mieux les conditions physiopathologiques

- Facteur surface (biofilm sur le polyethylène)
- Facteur sérum (pré-incubation des matériaux avec du sérum)

CIRI – INSERM U1111 **CNR des Staphylocoques**

Laboratoires de bactériologie

Hôpital Croix-Rousse et GHE

Pr. Frédéric LAURENT

Dr. Sophie ASSANT

P. Martins-Simoes

Dr. Florent VALOUR

Pr. Tristan FERRY

Dr. Céline DUPIEUX **Dr. Chantal ROURE**

Dr. Hélène SALORD **Dr. Sylvestre TIGAUD** **Jason TASSE William MOUTON Marine BUTIN Virginie TAFANI** Alice MONTEIX Andrea CARA Lélia ABAD **Régis VILLET** Jérôme JOSSE **Pierre Antoine CLERC**

Pr. François Vandenesch

Dr. Olivier DAUWALDER Dr. Oana DUMITRESCU Dr. Hélène MEUGNIER

Pr. Jérome Etienne

Dr. Yvonne BENITO

Dr. Michèle BES **Cédric BADIOU**

Dr. Elisabeth HODILLE

Pr. Gérard Lina Dr. Anne TRISTAN

Christine COURTIER Christine GARDON Caroline BOUVEYRON

Classement selon *Christensen et al.* (1985)

Détermination du cut-off (ODc)

Moyenne de la Σ des DO des contrôles négatifs + 3 x l'écart type (SD)

 Comparaison du cut-off avec les moyennes des OD de chaque souches :

OD ≤ ODc Non producteur

 $ODc < OD \le 2 \times ODc$ Faiblement producteur

 $2 \times ODc < OD \le 4 \times ODc$ Modérément producteur

4 x ODc < OD Fortement producteur