Pathophysiology of staphylococcal bone and joint infections

Pr Frédéric LAURENT

Department of Bacteriology – North Hospital, Hospices Civils de Lyon French National Reference Centre for Staphylococci International Centre for Infectiology Research - INSERM U1111 Institut des Sciences Pharmaceutiques et Biologiques de Lyon

Lyon, France

Physiological context

Healthy bone

Bone and joint infections

Definitions

- Osteomyelitis
- Spondylodiscitis (vertebra)
- Septic arthritis

- Acute or chronic: delay of 1 month (arbitrary!)
 - Implant-associated or not prothesis or osteosynthesis

Bone and joint infections

Hematogeneous

during bacteriemia

Risk on prosthesis:< 1%

Except for *S. aureus* : 30-40%

Acute

Direct Inoculation

joint puncture/infiltration open surgery or arthroscopy

Contiguous

Prosthetic-joint infection Coagulase-negative; staphylococci; Staph aureus; polymicrobial Streptococcus spp; gram-negative aerobic bacilli Skull osteomyelitis P. acnes; Coagulase-negative staphylococci

> Shoulder prosthesis joint infection P. acnes; Coagulase-negative staphylococci

> > Vertebral osteomyelitis Stoph oureus; gram-negative aerobic bacilli; Streptococcus spp; Mycobacterium tuberculosis Brucella C. burnetii

> > > **Osteomyelitis** Staph aureus; Streptococcus spp. Kingella kingae

Post-traumatic infection Staph aureus; polymicrobial gram-negative aerobic bacilli; anaerobes

Septic arthritis

Streptococcus spp;

Veisseria gonorrhoeae.

Staph aureus:

E. coli;

Diabetic foot infection Staph aureus; Streptococcus spp; Enterococcus spp; coagulase-negative staphylococci; gram-negative aerobic bacilli; anaerobes

Acute BJIs

Osteomyelitis in childhood Hematogenous

Septic arthritis Hematogenous Post-operative Contigous

Spondylodiscitis Hematogenous

Spinal implant infection Hematogenous Post-operative

Joint prosthesis or osteosynthesis infection Hematogenous Post-operative Contigous Acute post-operative hip prosthesis infection

Tumefaction Collection Inflammation

Discharge

Fight quickly and adequately for prosthesis salvage Prosthetic-joint infection Coagulase-negative; staphylococci; Staph aureus; polymicrobial Streptococcus spp; gram-negative aerobic bacilli

Septic arthritis

Streptococcus spp;

Post-traumatic infection

Staph aureus;

polymicrobial

gram-negative

aerobic bacilli:

anaerobes

Neisseria gonorrhoeae

Staph aureus:

E. coli;

Skull osteomyelitis

P. acnes; Coagulase-negative staphylococci

Shoulder prosthesis joint infection P. acnes; Coagulase-negative staphylococci

> Vertebral osteomyelitis Stoph aureus; gram-negative aerobic bacilli; Streptococcus spp; Mycobacterium tuberculosis Brucella C. burnetii

> > **Osteomyelitis** Staph aureus; Streptococcus spp.

Diabetic foot infection Staph aureus; Streptococcus spp; Enterococcus spp; coagulase-negative staphylococci; gram-negative aerobic bacilli; anaerobes

Chronic BJI

Osteomyelitis in childhood relapsing in adulthood Hematogenous

Spinal implant infection Post-operative

Post-trauma infections Post-operative Contigous

Prosthesis joint or osteosynthesis infection Hematogenous Post-operative

Skull bone flap Post-operative

Diabetic foot Contigous Prosthetic-joint infection

Coagulase-negative; staphylococci; Staph aureus; polymicrobial Streptococcus spp; gram-negative aerobic bacilli Skull osteomyelitis P. acnes; Coagulase-negative staphylococci

> Shoulder prosthesis joint infection P. acnes; Coagulase-negative staphylococci

> > Vertebral osteomyelitis Stoph oureus; gram-negative aerobic bacilli; Streptococcus spp; Mycobacterium tuberculosis

Chronic BJI

Osteomyelitis in childhood relapsing in adulthood Hematogenous

Spinal implant infection Spinal implant infection Spinal implant infection

Small colony variants

Staph aure Streptococ E. coli; Neisseria g

Septic arth

Post-trau infection Staph aure polymicro gram-neg aerobic ba anaerobe

staphylococci; gram-negative aerobic bacilli; anaerobes

Diabetic foot Contigous

Pathophysiopathology of BJI

S. aureus = 40% to 70% of BJI

Classical acute virulence

+ Recurrence et chronicity ++

Biofilm

Internalization

Small Colony Variant (SCV)

Pathophysiopathology of BJI

S. aureus = 40% to 70% of BJI

Classical acute virulence

+ Recurrence et chronicity ++

Biofilm

Internalization

Small Colony Variant (SCV)

Biofilm

Biofilm on prothesis (true life !)

Biofilm

Biofilm

Each bacteria is in a different microenvironment

Do l'adhárance au hiofilm

Polymer surface: hydrophobicity, AtlE, Aae and teichoic acids

Host matrix proteins: SdrF, SdrG, SdrH, Ebp, AtlE and Aae

PNAG, teichoic acids, Bap and Aap

PSMs? Proteases?

Bactéries IOA = +/- biofilm / intracellulaire

2 h

Fixation des S. aureus sur des irrégularités à la surface du matériel

4 h

Début de fabrication du "slime "

8 h

recouverte par une couche épaisse de "slime"

24 h

La surface du matériel est Des bactéries émergent du biofilm, libres et prêtes à se fixer ailleurs

+ free DNA + human/bacterial proteins + polysaccharides = GLUE

Otto, M. Nat Rev Microbiol, 2009.

Planctonic bacteria

. Elimination by the mechanisms of natural defense : antibodies, phagocytes

. Susceptibility to antibiotics

× Antibiotics

Anticorps

Oplanctonic bacteria

JW Costerton (1999) Science, 284:1318-1322

Bacteria and bifiofilm= adhesion on biotic or abiotic surfaces then adhesion bacteria/bacteria

- . Resistance to antibodies
- . Resistance to phagocytes
- . Resistance to most of teh antibiotics

Anticorps

Oplanctonic bacteria

bacteria in biofilm

phagocytes attracted by bacterial biofilm
 unefficient phagocytosis

 but local release of lysosomial enzymes
 from phagocytes unable to destroy
 biofilm matrix

× Antibiotics

Anticorps

Oplanctonic bacteria

bacteria in biofilm

JW Costerton (1999) Science, 284:1318-1322

. local release of lysosomial enzymes from phagocytes unable to destroy biofilm matrix

Tissue damages around prosthesis = loosening of prothesis

. Swarming of bacteria from biofilm

× Antibiotics

Anticorps

Oplanctonic bacteria

lacksquare

bacteria in biofilm

JW Costerton (1999) Science, 284:1318-1322

In BHI+ 1% glucose after 48H

Clinical MSSA isolatescollected in patient suffering from BJI

In BHI+ 1% glucose after 48H

In human sera after 48H/D30

In BHI after 48H

In human sera + 1% Glusoce after D2/D10/D15/D20/D25/D30

In BHI after 48H

In human sera + 1% Glusoce after D2/D10/D15/D20/D25/D30

In BHI after 48H

In human sera + 1% Glusoce after D2/D10/D15/D20/D25/D30

In BHI after 48H

In human sera + 1% Glusoce after D30

t

Relevance of data ? in vivo predictive value of data? Standardisation needed ? But which conditions ?

Pathophysiopathology of BJI

S. aureus = 40% to 70% of BJI

Classical acute virulence

+ Recurrence et chronicity ++

Biofilm

Internalization

Small Colony Variant (SCV)

Osteoblast invasion by S. aureus

Electronic microscopy Hoffmann *et al.*, Eur J Cell Biol 2011 Invasion of host cells is thought to result in a **bacterial sanctuary**

Inserm

UNIVERSITE DE LYON

Unresolved questions

Loss of homeostasy due to

Loss of osteoblast function (destruction, reduction of mineralisation) ? and/or gain of osteoclast function (increase resorption) ?

Consequences of intracellular interaction

S. aureus / osteoblasts ? S. aureus / osteoclasts ?
Intracellular *S. aureus* and osteoblasts

Invade to escape or invade to kill ?

Intracellular *S. aureus* and osteoblasts Model CA-MRSA / HA-MRSA PVL, alpha-toxine and PSMs

Intracellular S. aureus and osteoclasts

Invasion of precursors Impact on osteoclastogenesis Impact on bone resorption

Background

MRSA as study model of BJIs : two clinical patterns

HA-MRSA

- Post-surgical infections
- Periprosthetic infections
- Indolent / relapsing / chronic infections

CA-MRSA Panton-Valentine leukocidin (PVL)+

- Acute osteomyelitis (children++)
- Rapid progression with sepsis
- Major inflammation, bone destruction, involvement of surrounding soft tissue

Underlying mechanisms ? Genotypic differences ? ↓ Optimization of therapeutic strategies

Objectives

Working hypothesis

- Interactions of CA- and HA-MRSA with osteoblasts might differ
 - CA-MRSA => host cell damage
 - HA-MRSA => intracellular survival

Objectives

 Compare CA- and HA-MRSA virulence phenotypes in an ex vivo model of osteoblast intracellular infection

- Main readouts:
 - Host cell damage
 - Viable intracellular bacterial load

Osteoblast model

Materials

Bacterial strains

- 7 lineages, 5 strains in each lineage
 - CA-MRSA, n=15 / HA-MRSA, n=20

	Genotype	Origin	HA/CA	Seq. type	agr	SCC <i>mec</i> type
CONTROL	8325-4	-	-	8	1	- (MSSA)
	ST80	France	CA	80	3	IV
CA-MRSA	ST30	Australia, Japan, New Zealand, Samoa, Singapour	CA	30	3	IV
HA-MRSA	USA300	US	CA	8	1	IV
	EMRSA-2	France	НА	8	1	IV
	ST228	Switzerland	HA	228	2	I
	ST239	Poland, Greece, Bulgaria	НА	239	1	III
	EMRSA-15	UK, Germany, Austria	НА	22	1	IV

Cytotoxicity of CA- and HA-MRSA after 24h

Damage to infected cells: CA-MRSA >> HA-MRSA

Rasigade et al. PLoS One 2013

Intracellular persistence of CA- and HA-MRSA after 24h

Intracellular persistence: HA-MRSA >> CA-MRSA

Kinetics experiments

Bone cells bear ≈ 1 CA-MRSA / cell vs ≈ 5 HA-MRSA / cell Differences increase over time

Osteoblast mortality percentage (same experiments)

≈ 1 intracellular CA-MRSA / cell → 50% host cell mortality after 24h

 \approx 5 intracellular HA-MRSA / cell \rightarrow 20% host cell mortality after 24h

Conclusions

CA-MRSA are **less efficient at invading osteoblasts and surviving** inside them than are HA-MRSA

But ...

CA-MRSA cause much stronger damage to infected osteoblasts than HA-MRSA

Intracellular S. aureus and osteoblasts

Model CA-MRSA / HA-MRSA

PVL, alpha-toxine and PSMs

Intracellular S. aureus and osteoclasts

Invasion of precursors Impact on osteoclastogenesis Impact on bone resorption

Objectives

Part II.

Role of CA-MRSA virulence determinants in osteoblast damages observed after invasion

Major virulence determinants of CA-MRSA = toxins

We know that

- Panton-Valentine leukocidin (PVL) = present +++
- Alpha-toxin (HLA) = overexpression
- Phenol-soluble modulins (PSMs) = overexpression

Panton-Valentine leukocidin and alpha-toxin (loss-of-function approach)

>deletion of *pvl* or *hla* genes in lineages USA300, ST80 and ST30 had no impact on cytotoxicity

PSM expression associated with death of invaded osteoblasts

- Alpha-type PSMs in strain USA300 SF8300 are involved in cytotoxicity
- Level of expression of PSM (qRT-PCR) correlated to cytotoxic damages

Phenol soluble modulins

PSMare expressed after entrance in cells A expression

- PSM expressed 1h post invasion
- No or low expression by extracellular *S. aureus* extracellulaires

PSM = first intracellular toxins of *S. aureus*

Surewaard et al. PLoS Pathogens 2012

BJI due to CA-MRSA

Pathophysiological model

PVL : *in vivo* mechanism

C5aR dependant: no expression of C5a on osteoblasts ???

Rabbit Model of Staphylococcus aureus pneumonia

Diep et al., Proc Natl Acad Sci U S A. 2010.

BJI due to CA-MRSA

Pathophysiological model

Osteoblast invasion by S. aureus

Electronic microscopy Hoffmann *et al.*, Eur J Cell Biol 2011 Invasion of host cells is thought to result in a **bacterial sanctuary**

Inserm

UNIVERSITE DE LYON

Osteoblast model

Osteoblast invasion by S. non-aureus

Osteoblast invasion by S. non-aureus

S. aureus invasion and osteoclasts

Direct and indirect impacts on bone resorption

Aim :

- To study the direct impact of *S. aureus* on osteoclasts :
 - Phenotypic aspect (osteoclastogenesis)
 - Functional aspect (bone resorption)

Strategy of study

To test the S. aureus impact on different phase of osteoclastic differentiation

Tartrate-resistant acid Phosphatase

Material and methods

Osteoclastogenesis ?

Evaluation of bone resorption on bone matrix

Impact of live S. aureus infection on osteoclastogenesis

 Supernatent = boost resorption by mature uninfected OC

Interaction Ostéoclastes – S. aureus

Material and methods

Osteoclastogenesis ?

Evaluation of bone resorption on bone matrix

Infection of mature osteoclasts

Interaction osteoclasts – S. aureus

Interaction Osteoclasts – S. aureus

unfected mature osteoclast - Control

S. aureus-infected osteoclast

Intracellular S. aureus increases the capacity of resorption of mature osteoclasts

Interaction osteoclasts – S. aureus

Interaction osteoclasts – S. aureus

infectés

Direct impact of recombinant toxins on osteoclasts

Cytotoxic effect of staphylococcal toxins

Toxines (ng/mL)

3 replicates in 3 different donors

Direct impact of recombinant toxins on osteoclasts

Direct impact of recombinant toxins on osteoclasts

Impact of recombinant toxins on osteoclasts

→ TSST-1 increase the capacity of resorption of mature osteoclasts

From acute BJI to chonic BJI

Bettina Loeffler showed us in vitro data and data from animal about SCV

To date, **no study** comparing isolates recovered from **the same patient** at time of acute BJI and at time of chronicization have been performed

Aim of the study

To date, **no study** comparing isolates recovered from **the same patient** at time of acute BJI and at time of chronicization have been performed

To determine if bacterial mechanisms involved in persisting BJIs are present at acute infection or are the consequence of *in vivo* adaptation.

S.aureus strains

3 couples of MSSA strains isolated from patients suffering from recurrent or persisting prosthetic joint infection (PJI) at *initial diagnosis* of PJI and at the *time of relapse*.

Clinical data

Patient no	Sexe, age (year)	Site of infection	Duration of symptoms (days)	Surgical treatment	Duration of antibiotherapy (days)	Time to failure or relapse (days)
1	H,26	Tibia osteosynthesis material	12	Material Removed	82	82
2	H,80	Total knee arthroplasty	3	Irrigation and debridment	191	201
3	F,82	Total hip arthroplasty	3	Irrigation and debridment	98	134

S.aureus strains

3 couples of MSSA strains isolated from patients suffering from recurrent or persisting prosthetic joint infection (PJI) at *initial diagnosis* of PJI and at the *time of relapse*.

Clinical data						
Sexe, age Patient no (year) Site of infection		Duration of symptoms (days)	Surgical Duration of treatment antibiotherapy (da		Time to failure or relapse (days)	
1	H,26	Tibia osteosynthesis material	12	Material Removed	82	82
2	H,80	Total knee arthroplasty	3	Irrigation and debridment	191	201
3	3 F,82 Total hip arthroplasty		3	Irrigation and debridment	98	134

Same antibiotic susceptibility profile

S.aureus strains

3 couples of MSSA strains isolated from patients suffering from recurrent or persisting prosthetic joint infection (PJI) at *initial diagnosis* of PJI and at the *time of relapse*.

Clinical data Duration of Time to failure Surgical **Duration of** Sexe, age Patient no Site of infection symptoms (days) or relapse antibiotherapy (days) (year) treatment (days) Material Tibia osteosynthesis H,26 1 12 82 82 material Removed Total knee Irrigation and 2 H,80 3 191 201 arthroplasty debridment Irrigation and 3 F,82 Total hip arthroplasty 3 98 134 debridment

Same antibiotic susceptibility profile

Material and methods

Biofilm ringtest[®] method: Evaluation of early biofilm formation

All patients

First strain

.....

8 15 20

---- T+

- T-

Recurrent strain

All patients

Same capacity of formation of precoce biofilm

2 experiments in duplicate

Persisting strains form more mature biofilm than initial ones.

Materials et methods

in vitro infection model

Cell culture

MC-3T3

Human primary osteoblasts isolated from non-infected patients and sampled during routine hip surgery

In vitro: infection model of osteoblasts

Adhesion to osteoblasts

Adhesion to osteoblasts, mean (%) +/- SD

	Initial strain	Recurrent strain	р
MC3T3 cells	100 +/- 19	115 +/- 45	0.126
Primary cells	100 +/- 40	78 +/- 25	0.569

3 experiments in duplicate. Statistical analysis: Mann- Whitney test (*) confirmed by multivariate analysis controling with patients (Ŧ)

Adhesion to osteoblasts

Same capacity of adhesion to osteoblasts for initial and recurrent strains

3 experiments in duplicate. Statistical analysis: Mann- Whitney test (*) confirmed by multivariate analysis controling with patients (Ŧ)

Capacity of internalization in osteoblasts

Internalisation in	osteoblasts, mean	(%) +/- SD
--------------------	-------------------	------------

	Initial strain	Recurrent strain	р
MC3T3 cells	100 +/- 12	117 +/- 64	0.525
Primary cells	100 +/- 15	118 +/- 75	0.4

Statistical analysis: Mann- Whitney test

Capacity of internalization in osteoblasts

Same capacity of internalization in osteoblasts for initial and recurrent strains

Persistence in primary osteoblasts

3 experiments in duplicate.

Bacterial persistence in primary osteoblasts, mean (%) +/- SD

	Initial strain	Recurrent strain	р
24h pi	100 +/- 17	125 +/- 80	0.007
48h pi	100 +/- 32	322 +/- 320	0.014

Statistical analysis: Mann- Whitney test (*) confirmed by multivariate analysis controling with patients (Ŧ)

Persistence in primary osteoblasts

Recurrent strains have a higher capacity of persistence in primary osteoblasts than initial strains at 24h and 48h

Cytotoxicity: primary human osteoblasts

Cytotoxicity of MC3T3 cells (ΔLDH), mean (%) +/- SD

	Initial strain	Recurrent strain	р
24h pi	1.89 +/- 3.78	- 0.17 +/- 2.35	0.133
48h pi	8 +/- 4.02	3.17 +/- 3.47	0.018

3 experiments in duplicate.

Statistical analysis: Mann- Whitney test (*) confirmed by multivariate analysis controling with patients (Ŧ)

Cytotoxicity: primary human osteoblasts

Recurrent strains are less cytotoxic than initial strains in primary osteoblasts

Immune response

Quantification of cytokines concentrations in cell culture supernatant of human primary supernatant 48h post infection d'infection

Osteoblasts infected by recurrent isolates secrete less inflammatory cytokines that those infected by initial ones

To sum up data from in vitro infection model

Materials et methods

in vitro infection model

In vivo: intra-peritoneal infection model

In vivo: intra-peritoneal infection model

Recurrent isolates **persist longer in peritoneal cavity** than initial ones -> less recognized by immune cells (because less virulent)

Test de Mann- Whitney

In vivo: lung infection model

In vivo: lung infection model

In vivo: lung infection model

Lower mortality observed with recurrent isolates

Genomic data

Patient	Isolate	Chromosome size (bp)	Plasmid size (bp)	% GC content chromosom e	% GC content plasmid	Overall alignment rate (initial genome covered by recurrent isolate reads)	Total nb of SNPs (recurrent vs initial)	Nb of SNPS in coding regions
1	initial	2726238	20632	32,89	28,38	28,38 98.88	5	0
	recurrent	2726193	20633	32,89	28,38			
2	initial	2749852	17307	32,82	28,38	99,07	5	0
	recurrent	2749888	17307	32,82	28,38			
3	initial	2679642	20720	32,86	28,37	99,14	4	3
	recurrent	2678500	no <u>plasmid</u>	32,86	-			

No genetic convergenceentr when comapring SNP in the three pairs No gene with specific function involved

If it is not DNA Could it be RNA ? RNAseq underway ... If its not RNA ... Could it be epigenetic modification ? ...
Modèles in vivo

Séquençage des génomes complet

Patient	Isolate	Chromosome size (bp)	Plasmid size (bp)	% GC content chromosom e	% GC content plasmid	Overall alignment rate (initial genome covered by recurrent isolate reads)	Total nb of SNPs (recurrent vs initial)	Nb of SNPS in coding regions
1	initial	2726238	20632	32,89	28,38	98.88	5	0
	recurrent	2726193	20633	32,89	28,38			
2	initial	2749852	17307	32,82	28,38	9 9,07	5	0
	recurrent	2749888	17307	32,82	28,38			
3	initial	2679642	20720	32,86	28,37	9 9,14	4	3
	recurrent	2678500	no <u>plasmid</u>	32,86	-			

Pas de convergence génétique entre les trois couples Pas de gènes de fonction connue

Si ce n'est pas l'ADN... c'est l'ARN ??? Technique RNAseq en cours

It is crucial to explore BJI ...

it is and it will be a hot topic of interest in the future

It is crucial to explore BJI ... it is and it will be a hot topic of interest in the future

It is crucial to explore BJI ... it is and it will be a hot topic of interest in the future

2016

It is crucial to explore BJI ... it is and it will be a hot topic of interest in the future

2016

Centre International

de Recherche en Infectiologie

ج

Jason TASSE Céline DUPIEUX Jean-Philippe RASIGADE **Yousef MAALI** Sacha FLAMMIER Virginie TAFANI William MOUTON **Régis VILLET** Yann DUMONT

Científíca

Guilherme Loss

Laboratório Ana Tereza Vasconcelos Nacional de

...

F

Pr. Francois VANDENESCH Pr. Jérome ETIENNE Pr. Gérard LINA Dr. Anne TRISTAN Dr. Michèle BES Dr. Olivier DAUWALDER Dr. Oana DUMITRESCU Dr. Hélène MEUGNIER **Yvonne BENITO** Cédric BADIOU

Christine COURTIER Christine GARDON Caroline BOUVEYRON **Roxane SCHNEL**

Anne-Marie FREYDIERE Michèle de MONTCLOS **Ghislaine DESCOURS Anne-Gaelle RANC**

Dr.Sylvestre TIGAUD Dr. Chantal ROURE Dr. Hélène SALORD toutes les techniciennes du Nord !!!

Sophie ASSANT-TROUILLET

Pr. Tristan FERRY

Pr Sébastien LUSTIG

Dr. Florent VALOUR

Patricia SIMOES

Part I : Impact of *S. aureus* on osteoclastic precursors

Osteoblast invasion by S. aureus

Electronic microscopy Hoffmann *et al.*, Eur J Cell Biol 2011 Invasion of host cells is thought to result in a **bacterial sanctuary**

Inserm

UNIVERSITE DE LYON

mpact of five *S. dureus* miection on

osteoclastogenesis

Impact of live *S. aureus*, infection on osteoclastogenesis

Effect of particulate, membranes, secretome ?

→ Heat-killed Staphylococci → Latex bead 2 and 0,75µm (size of *Staphylococci*)

No effect of particulate Low effect of killed bacteria / bacterial membranes Major effect of secretome

Characterization **of** mononuclear TRAP negative cells induced after *S. aureus* internalization

CD11b

Macrophagic differentiation

With J. Marvel and P. Parroche

Characterization of mononuclear TRAP negative cells induced after *S. aureus* internalization

Cytokine/chemokine profile

Pro-inflammatory chemokine release

Impact of pro-inflammatory cytokines on osteoclastogenesis

Uninfected OC precursors + culture supernatant from infected OC

Composition

of culture medium

Infected OC precursors boost osteoclastogenesis

Conclusion part I

- Intracellular staphylococci inhibits osteoclastogenesis independently of the presence of FnBP
- No effect of particulates but specific effect of intracellular staphylococci
- Infected osteoclastic precursors differentiate in macrophages secreting proinflammatory factors such as MCP-1 (pro-osteoclastogenic properties)

Part II : Impact of *S. aureus* on mature osteoclasts

Internalization and S. aureus intracellular persistance

Hours post infection

Impact of S. aureus on cellular spreading and osteoclasts fusion

72h post infection, increase of size and fusion of osteoclasts

Impact on S. aureus bone resorption

Method : bone matrix + OC for 24h , then microscopic imaging

Control

S. aureus infection enhances bone resorption of mature osteoclasts

 Staphylococcal impact on mature osteoclasts is independent of the presence of FnBP

 Intracellular staphylococci modify cellular spreading and fusion and induce enhancement of bone resorption capacity

Take home message

Direct and indirect effects of *S. aureus* invasion of bone cells on bone homeostasy

- Invasion of osteoblasts (CA-MRSA)
 - PSM (-> autophagy ->) mort cellulaire
 - perte de fonction

- Invasion of osteoclastic precursors
 - Hijacking to macrophagic differentiation -> cytokines -> enhacement of osteoclastogenesis
- Invasion mature osteoclast
 - Increase of bone resorption

All effects are in favour of bone looseming

THANK YOU FOR YOUR ATTENTION

STAPHYLOCOCCAL PATHOGENESIS **INSERM U1111**

STAPHYLOCOCCUS REFERENCE CENTER MICROBIOLOGY LAB LYON UNIVERSITY HOSPITAL

CLINICAL LYON UNIVERSITY HOSPITAL

Frédéric LAURENT

Chantal ROURE-SOBAS Hélène SALORD Jean-Philippe RASIGADE Sophie TROUILLET-ASSANT Patricia MARTINS-SIMOES **Céline DUPIEUX Michèle BES Florent VALOUR**

François VANDENESCH Jerome ETIENNE Gérard LINA

Annie MARTRA

Martine ROUGIER

Christine COURTIER

Christine GARDON

Sophie JARRAUD

Anne TRISTAN

Team Inserm U1111 :

- Dr Tristan FERRY(Associate Professor, Infectious Disease)
- Dr Sébastien LUSTIG (Associate Professor, Orthopedic surgery)
- Jean-Philippe RASIGADE PhD
- Sophie TROUILLET-ASSANT PhD
- Patricia MARTINS-SIMOES Ingeneer
- Céline DUPIEUX PhD
- Florent VALOUR PhD
- Jason TASSE PhD
- Sacha FLAMMIER Master
- Lucie LELIEVRE Master

<u>finovi</u>

Team IGFL

- Pr Pierre Jurdic
- Marlène Gallet
- Pauline Nauroy
- Margot Grignard
- Chantal Domenge, Irma Machuca Gayet, Dan Georgess

Is there a correlation between cytotoxicity and intracellular survival ?

Cytotoxicity and intracellular survival were **not independently associated** in multivariate analysis controlling for the CA- or HA-MRSA status

Quantification escape / autophagy en MET

- Gentamicin protection assay
- Cells harvested 6h post-infection and processed for TEM
- TEM-based scoring of bacteria based on surrounding membranes:

NO MEMBRANE Free in cytoplasm

SINGLE MEMBRANE Enclosed in phagosome DOUBLE MEMBRANE Enclosed in autophagosome

Phagosomal escape and autophagy induction

46.5% of infected cells contained at least 1 wild type *S.aureus*-containing autophagosome

 $psm\alpha$ deletion: 2.27-fold reduction (p < 0.001)

PSMs induce/hijack autophagy

Fisher's chact test, chact binormal 5570013, 2 macp. Enp.

Part II

Impact of staphylococcal regulators on the cytotoxic phenotype of CA-MRSA

Results

Role of major regulatory systems ?

Materials

- isogenic bacteria deleted for agr or sarA or saeRS

- mesure of cytotocity after osteoblast invasion

Conclusion

 Functional agrA and sarA regulators are required for cytotoxicity in strain SF8300

No impact of saeRS deletion

Profiles of regulation in CA-MRSA :

- . *agr* : upregulates **PSMs**, alpha-toxin and PVL
- . sarA: upregulates PSMs and alpha-toxin
- . *sae*RS: upregulates alpha-toxin, **not PSMs**

=> regulatory requirements of cytotoxicity seem consistent with a predominant role of PSMs

UNIVERSITE DE LYO

Objectives

Part III.

Role of CA-MRSA virulence determinants in osteoblast damage

Major virulence determinants of CA-MRSA:

- Panton-Valentine leukocidin (PVL): recruits and kills neutrophils
- Alpha-toxin (HLA) overexpression: haemolysis
- **Phenol-soluble modulins** (PSMs) overexpression: recruit and kill neutrophils BUT controversial

Profiles of regulation in CA-MRSA :

- . *agr* : upregulates **PSMs**, alpha-toxin and PVL
- . sarA: upregulates PSMs and alpha-toxin
- . saeRS: upregulates alpha-toxin, not PSMs

⇒regulatory requirements of cytotoxicity seem consistent with a predominant role of PSMs