Intra-osteoblastic synergy of daptomycin with beta-lactams for *S. aureus* BJI

Sophie Trouillet-Assant, Céline Dupieux, Caroline Camus, Sébastien Lustig, Christian Chidiac, Tristan Ferry, Frédéric Laurent and Florent Valour on behalf of the Lyon BJI study group

Prof. Frédéric Laurent

frederic.laurent@univ-lyon1.fr
Daptomycin in BJI: success and pitfalls

Increasingly used in staphylococcal BJI

(i) Acceptable bone diffusion at high concentration
(ii) Good tolerance
(iii) Targetting pathophysiologial pathways?

Good activity against bacteria embedded in biofilms

Daptomycin in BJI: success and pitfalls

Increasingly used in staphylococcal BJI

(i) Acceptable bone diffusion at high concentration
(ii) Good tolerance
(iii) Targetting pathophysiological pathways?

ΔΔ ΔΔ log10 for 100,000 cells CFU of intracellular S. aureus after 24-h exposition

antibiotic
Daptomycin in BJI: success and pitfalls

Increasingly used in staphylococcal BJI

(i) Acceptable bone diffusion at high concentration
(ii) Good tolerance
(iii) Targetting pathophysiological pathways?

Good activity against bacteria embedded in biofilms

BUT

Weak activity against staphylococcal intraosteoblastic reservoir

Daptomycin in BJI: success and pitfalls

Increasingly used in staphylococcal BJI

(i) Acceptable bone diffusion at high concentration
(ii) Good tolerance
(iii) Targetting pathophysiological pathways?
 - Good diffusion and activity within biofilms
 - Weak intracellular activity

Use of daptomycin in *S. aureus* BJI without enhancing the risk of relapse due to the intracellular reservoir requires to improve its intra-ostoblastic activity
Daptomycin synergy with betalactam antibiotics

In vitro Synergy of daptomycin with betalactam antibiotics against MSSA and MRSA

Mechanism: reduce the charge of the outer bacterial membrane which enhance daptomycin binding

In vivo Daptomycin-oxacillin synergy in experimental models (IE, foreign body infection)

Clinical studies: case reports of MRSA bacteremia +/- BJI (“rescue therapy”)

Objective: Assessing the efficacy of daptomycin in combination with oxacillin and daptomycin against intracellular MSSA and MRSA in an *ex vivo* model of human osteoblastic cell infection
MRSA strain LUG359 (COL strain) and its MSSA isogenic counterpart obtained by inactivation of the mecA gene by allelic replacement.
Methods

- **Infection**
 - MOI 100:1
 - 24h 37°C

- **Adhesion and Invasion**
 - 2h 37°C
 - Lysostaphin 10 µg/mL
 - 1h 37°C

- **Elimination of Extracellular Bacteria**
 - 24h 37°C
 - Antibiotics: Daptomycin, Oxacillin, Ceftarolin (alone or in combination at human bone concentration)

- **Evaluation of Cell Survival**
 - MTT

- **Quantification of Intracellular Bacteria**
 - Cell lysis
Results

MSSA

Proportion of intracellular bacteria at 24h compared to untreated cells (mean: 95%CI)

- Untreated cells
- Daptomycin
- Oxacillin
- Ceftaroline
- Daptomycin + Oxacillin
- Daptomycin + Ceftaroline

MRSA

Proportion of intracellular bacteria at 24h compared to untreated cells (mean: 95%CI)

- Untreated cells
- Daptomycin
- Oxacillin
- Ceftaroline
- Daptomycin + Oxacillin
- Daptomycin + Ceftaroline
Results

→ Confirmation of the weak activity of daptomycin against intracellular MSSA/MRSA
Results

→ Acceptable efficacy of oxacillin against intracellular *S. aureus* INCLUDING MRSA
Results

→ Superiority of the daptomycin-oxacillin combination compared to each molecule alone not observed for the daptomycin-ceftarolin combination

Complementary investigations

Intraosteoblastic *S. aureus*: partly intralysosomal = acidic pH

→ Evaluation of the impact of pH on antibiotic activity

Methods:
- MICs evaluations at pH 7 and pH 5
- Synergy evaluations at pH 7 and pH 5 (E-test, checkerboard)

<table>
<thead>
<tr>
<th>MIC mg/L</th>
<th>SASM</th>
<th></th>
<th>SARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 7</td>
<td>pH 5</td>
<td>p-value</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>0.25</td>
<td>1.83</td>
<td>0.002</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0.50</td>
<td>0.06</td>
<td>0.047</td>
</tr>
</tbody>
</table>

→ Weak intracellular activity of daptomycin might be partly due to its decreased activity at acidic pH

→ Intracellular restauration of oxacillin activity against MRSA is (at least partly) due to a major decrease in MICs at the intralysosomal acidic pH

→ No *in vitro* synergy was observed using these methods (partial results, not shown)
Complementary investigations

Intraosteoblastic *S. aureus*: partly intralysosomal = acidic pH

→ Evaluation of the impact of pH on antibiotic activity

Methods:
- MICs evaluations at pH 7 and pH 5
- Synergy evaluations at pH 7 and pH 5 (E-test, checkerboard)

<table>
<thead>
<tr>
<th>MIC mg/L</th>
<th>SASM</th>
<th>SARM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 7</td>
<td>pH 5</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>0,25</td>
<td>1,83</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0,50</td>
<td>0,06</td>
</tr>
</tbody>
</table>

→ Weak intracellular activity of daptomycin might be partly due to its decreased activity at acidic pH

→ Intracellular restauration of oxacillin activity against MRSA is (at least partly) due to a major decrease in MICs at the intralysosomal acidic pH

→ No *in vitro* synergy was observed using these methods (partial results, not shown)
Complementary investigations

Intraosteoblastic *S. aureus*: partly intralysosomal = acidic pH

→ Evaluation of the impact of pH on antibiotic activity

Methods: - MICs evaluations at pH 7 and pH 5
- Synergy evaluations at pH 7 and pH 5 (E-test, checkerboard)

<table>
<thead>
<tr>
<th>MIC mg/L</th>
<th>SASM</th>
<th>pH 7</th>
<th>pH 5</th>
<th>p-value</th>
<th>SARM</th>
<th>pH 7</th>
<th>pH 5</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daptomycin</td>
<td>0,25</td>
<td>0,29</td>
<td>2,00</td>
<td>0,002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0,50</td>
<td>0,06</td>
<td>0,35</td>
<td>0,047</td>
<td>106,70</td>
<td>0,35</td>
<td>0,001</td>
<td></td>
</tr>
</tbody>
</table>

→ Weak intracellular activity of daptomycin might be partly due to its decreased activity at acidic pH

→ Intracellular restauration of oxacillin activity against MRSA is (at least partly) due to a major decrease in MICs at the intralysosomal acidic pH

→ No *in vitro* synergy was observed using these methods (partial results, not shown)
Conclusions and perspectives

Local chemical conditions importantly impact the intracellular activity of antistaphylococcal molecules

Perspective: Evaluation of adjuvants modulating intracellular pH conditions for enhancing the ability of antimicrobials to eradicate the *S. aureus* intraosteoelastic reservoir leading to BJI chronicity and relapse
Aknowledgements: Lyon BJI study group

ID department – Florence Ader, André Boibieux, François Biron, Evelyne Braun, Christian Chidiac, Fatiha Daoud, Tristan Ferry, Johanna Lippman, Patrick Miailhes, Thomas Perpoint, Dominique Peyramond, Julien Saison, Marie-Paule Vallat, and Florent Valour

Laboratory of bacteriology – Céline Dupieux, Frédéric Laurent, Jean-Philippe Rasigade et François Vandenesch

Nuclear medicine – Francesco Giammarile, Marc Janier et Isabelle Morelec

Pharmacology – Marie-Claude Gagnieu, Sylvain Goutelle et Michel Tod

Clinical research assistant – Eugénie Mabrut